Требуемые материалы
Для изготовления солнечной батареи потребуются следующие материалы:
- фотоячейки;
- алюминиевые уголки;
- диоды Шоттки;
- силиконовые герметики;
- проводники;
- крепежные винты и метизы;
- поликарбонатный лист/оргстекло;
- паяльное оборудование.
Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.
Выбор фотоэлементов
Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.
КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.
Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.
Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием.
Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.
Можно ли заменить фотоэлектрические пластины чем-то другим
Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.
Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов
Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.
Солнечные батареи для отопления
Принцип действия гелиосистемы отопления дома.
Мы уже разобрались, как выбрать и купить солнечные батареи на дом, поговорили об их принципе действия, достоинствах и недостатках. Теперь следует поговорить о солнечных панелях, используемых для обогрева домовладений – они отличаются по своей конструкции. Принцип их работы заключается в преобразовании энергии солнца в тепло. Такие батареи правильнее называть солнечными коллекторами (гелиосистемами).
Солнечное отопление наиболее выгодно в регионах с максимальным количеством солнечных дней. Здесь батареи смогут переработать максимум энергии, представленной световым и инфракрасным излучением. Затраты на приобретение и установку оборудования окупаются за несколько лет (от 2 до 5) при общем сроке службы до 30 лет. Следует отметить, что данные системы отопления не могут работать самостоятельно, поэтому их используют совместно с другими источниками тепла – это отопительные котлы, электронагреватели.
Многие современные отопительные котлы оснащаются автоматикой для работы с солнечными коллекторами, обеспечивая экономичный обогрев помещений.
Давайте рассмотрим основные достоинства солнечных батарей (гелиосистем):
- Существенная экономия на коммунальных услугах или топливе для работы отопительного оборудования;
- Снижение затрат на горячую воду – максимальная экономия проявляется в летний период;
- Возможность обогрева зданий любого назначения – от жилых построек до предприятий;
- Отсутствие влияния на окружающую среду – какие-либо выбросы здесь отсутствуют;
- Возможность работы с отопительными котлами любого типа.
Есть и недостатки:
Для регионов с обильными снегопадами лучше использовать плоские солнечные батареи с режимом оттайки.
- Отопление с помощью солнечных батарей не может полностью заменить другие источники тепла – оно является вспомогательным;
- Высокая стоимость оборудования – прежде чем покупать технику, нужно провести расчеты целесообразности ее применения;
- Низкая эффективность в сильные морозы и в пасмурную погоду – мощный многодневный снегопад станет серьезным препятствием для работы отопления;
- Коллекторы, как и электрические солнечные батареи, нуждаются в периодической чистке – от пыли и снега.
Недостатки серьезные, как и в случае с электрическими солнечными батареями – и ничего нут не поделаешь.
Преимущества
Использование солнечных батарей имеет следующие преимущества:
- доступность источника энергии;
- постоянное и независимое энергоснабжение;
- экологичность;
- бесшумность;
- высокая износостойкость.
Каждое из этих достоинств мы опишем более подробно.
Доступность источника энергии
Солнце освещает практически каждый участок поверхности Земли. Поэтому человек может воспользоваться преимуществами использования солнечной энергии. Также следует отметить, что потенциал этого типа энергии в рамках всемирного масштаба многократно превышает потребность в ней.
Постоянное и независимое энергоснабжение
В отличие от полезных ископаемых, энергия Солнца неисчерпаемая и всеобъемлющая. Конечно, как и все на нашей планете имеет свой конец, так и Солнце может иссякнуть. Но когда это произойдет – никто наверняка не знает. Помимо этого, ни солнечная панель, ни сам источник не требует каких-либо затрат на содержание. Этот факт делает вас абсолютно независимым от цен и транспортировки электроснабжения.
Бесплатное потребление
Как мы уже упоминали, Солнце – источник бесплатной энергетики. Некоторые затраты потребуются лишь на установку системы, которая обеспечит вас электричеством. Но в данном случае их можно отнести к долгосрочным инвестициям.
Экологичность
Глобальное потепление – серьезная проблема. Использование солнечных батарей помогает снизить расход природных ресурсов, а их производство и принцип работы не сопровождаются выбросом вредных веществ в атмосферу. Поэтому они являются абсолютно экологичными.
При установке системы, перерабатывающей солнечную энергию в электричество, вы можете быть уверенны в ее безопасности для окружающей среды и своих родных и близких.
Бесшумность
Генерация электроэнергии происходит совершенно бесшумно по причине отсутствия движущихся деталей в конструкции солнечных панелей. Устанавливая систему на крыше своего дома, можно не беспокоиться о постоянном гуле, который, например, издают электрические столбы.
Высокая износостойкость
Срок службы такой системы электроснабжения составляет около 25 лет. С течением времени КПД панелей начинает снижаться. В виду простоты конструкции, ее всегда можно заменить на новую.
Тонкопленочные солнечные батареи преимущества
Батареи такого типа получили несколько серьезных преимуществ, которые смело можно назвать существенными. Итак, в какие плюсы и тонкопленочных батарей:
- Маленький вес. Такие батареи выполнены из очень легких материалов, поэтому устанавливать и работать с ними – это одно удовольствие.
- Полупрозрачность. Именно такое свойство позволяет устанавливать их даже на окна. В таком случае часть света будет идти в помещение, а другая часть, преобразовывая электричество.
- Гибкость. Такие панели можно устанавливать практически на любую плоскость, изогнутое состояние не нарушает работоспособности.
- Ударопрочность. Пленка остается работоспособной во время сильного града, падения на землю и т.д.
Плюсы и минусы солнечных батарей
Солнечная батарея обладает своими преимуществами и недостатками. Рассмотрим их более подробно.
Плюсы:
- Высокая экологичность. При эксплуатации не используются невосполнимые ископаемые, не возникает отходов.
- Отсутствие шума.
- Доступность. Каждый уголок Земного шара освещается Солнцем.
- Постоянство. Если ископаемые могут закончиться, их выработка уменьшиться, то наcчет солнечной энергии беспокоиться не стоит. По данным ученых, нашему светилу еще долго ничего не грозит.
- Обширная область использования. Панели могут применяться как в сельской местности, так и в космосе.
- Новые технологии. На солнечных батареях проводят испытания, на их усовершенствование тратятся громадные суммы, данная область постоянно модернизируется, подвергается инновациям.
Минусы:
- Дороговизна. Не каждый человек может позволить себе установить достаточное количество солнечных элементов питания для обеспечения своих нужд. Электрификация небольшого дачного домика обойдется в 1000-1200 долларов, в то время как на двухэтажных особняк может уйти до 10 000 у.е.
- Солнечное освещение – непостоянная единица. КПД батареи будет снижаться в ночное время, пасмурную погоду.
Принцип работы солнечной батареи
В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.
При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.
Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.
Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).
Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.
Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.
Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.
Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.
И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.
Термальная солнечная электростанция в Испании (город Севилья)
Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность
Затем важно, каким запасом энергии они обладают
Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.
Предложения на рынке солнечных батарей для туризма
Все предложения делятся на два класса – жесткие модули на кристаллическом кремнии и гибкие тонкие пленки.
Жесткие панели.
Представлены наиболее широким диапазоном мощности. Могут применяться для всех видов выездного туризма, включая временную стационарную установку солнечной электростанции при отдыхе в кемпингах. В нашем магазине много вариантов таких моделей, например:
- 15 ватт – 1230 руб.;
- 30 ватт – 2021 руб.;
- 50 ватт – 3700 руб.;
- 100 ватт – 5770 руб.;
- 150 ватт — 6380 руб.;
- 200 ватт – 6600 руб.
Гибкие компактные солнечные батареи для пешего туризма.
Гибкие солнечные панели чрезвычайно популярны своей универсальностью и самыми разнообразными конструктивными вариантами исполнения. Не обладают большой мощностью, но очень легкие и удобны в транспортировке.
Например, складная «гармошка» или рулон легко умещаются даже в небольшой рюкзак. Зато при стандартном КПД более 20% и возможности развернуть общее «полотно» на 7-8 квадратных метров может выдавать до 140-160 Вт/час при ярком солнце.
Сверхмалые «носимые».
Могут использоваться прямо «на ходу». Встраиваются в сумки, рюкзаки, пояса, предметы одежды и даже обувь. Благодаря выведенным разъемам способны заряжать любые гаджеты, не требуя остановок. Из наиболее популярных брендов следует отметить:
- раскладываемая «гармошка» SOLARMONKEY ADVENTURER – 6 Вт, 270 грамм;
- карманная модель Goal ZeroNomad7 – 7 Вт, 495 грамм;
- пластины на сумки Fuse Voltaic Systems – пленочные, 6 Вт, 600 грамм (опционально в комплекте мини АКБ на 4 тыс. А*ч).
- SOLAR и SCN-4/6 от китайских и C3У2-БCA7.5 отечественного российского производства.
Вред экологии
Несмотря на экологическую безвредность применения солнечных батарей, их производство и утилизация может навредить окружающей среде и здоровью людей. Солнечные панели содержат металлы, такие как свинец, медь, галлий и кадмий, синтетические материалы. Их основа изготавливается из алюминия. Все это требует грамотной утилизации. Также, размещенные на больших площадях, они могут влиять на климат, нарушая естественный температурный режим.
Само производство фотоэлементов и панелей является химически грязным. Стоки и отработанные газы пагубно влияют на экологию. Земля, вода и воздух могут содержать вредные вещества, что является угрозой для всего живого вокруг этих предприятий.
Так стоит ли причислять солнечные панели к предметам причиняющим вред экологии?
Количество солнечных электростанций растет. Если технологии не будут развиваться в сторону наименьшего причинения вреда планете и людям, человечество ждет еще одна рукотворная экологическая проблема.
Критерии выбора
Определяющим фактором служат климатические условия: длина солнечных дней, их количество. Жителям регионов с малой освещенностью подойдут панели из микроморфного кремния – они не нуждаются в точном ориентировании, по суммарной годовой мощности опережают прочие тонкопленочные вариации. В северных районах востребовано текстурированное стекло.
Критерием выбора гибких солнечных панелей является длина солнечных дней
Важно, чтобы мощность модуля соответствовала потребностям используемых электроприборов. Необходимо найти не только оптимальный участок для размещения изделий, но и резервную площадку, позволяющую впоследствии нарастить мощность
Качество и длительность эксплуатации, а также стоимость продукции зависят от базового материала, номинальной производительности, типа конструкции и параметров фотоэлемента. На профильном рынке востребованы как иностранные, так и заслужившие доверие отечественные бренды – последние оптимально приспособлены к климатическим условиям региона.
Заслуживают внимания гибридные панели, генерирующие электрическую и тепловую энергию.
Преимущества и недостатки солнечных батарей
Теперь поговорим о плюсах и минусах домашних гелиосистем.
Плюсы
- Это неиссякаемый и вседоступный источник энергии. Солнце есть всегда и в ближайшее время не собирается исчезать. Если солнце окончательно пропадет, то уже никого в мире не будет сильно волновать вопрос, где найти электроэнергию.
- По сравнению c ветряными генераторами электричества, панели абсолютно бесшумны.
- Сами панели износостойкие.
- Длительный (25–30 лет) срок службы.
- Установив такую систему один раз у вас не будет переживаний по поводу того, что поставщик электроэнергии придёт и отрежет ваш дом от подачи электричества или цены на услуги, внезапно подрастут.
- Вы всегда можете нарастить мощность гелиостации. Ну конечно тут главный вопрос в площади. Но в любом случае модульность таких систем позволяет в любой момент добавить и запитать в свою систему новые панели.
- Важный фактор экономия. При существующем стационарном подключении панели дают возможность снизить расходы на электроэнергию.
- Независимость от централизованной подачи электричества. Это особенно актуально в дачных поселках, где свет отключают внезапно и на длительное время.
- Вы станете еще одним человеком, который реально сохраняет чистоту атмосферы — это, с точки зрения экологии, абсолютно чистое устройство.
Недостатки
Надо признать, что и у гелиосистем есть свои минусы:
- Нельзя обеспечить бесперебойную работу. Если в летний период солнечная активность весьма высока, то в зимний период такие системы малоэффективны. Тучи и низкая облачность тоже влияют на производительность этих систем. Поэтому возникает необходимость продублировать гелиосистему традиционным источником электричества или применять гибридные гелиопанели. Не стоит забывать и о районе, в котором будут использоваться такие системы. В разных местностях совершенно разная солнечная активность. Поэтому установка солнечных элементов в большей мере должна быть скорректирована с учетом месторасположения вашей дачи.
- Самый большой минус — большие первоначальные финансовые расходы. Да и срок окупаемости вопрос довольно спорный и до конца не однозначен.
- Низкий уровень КПД. Тоже больной вопрос. С одного квадратного метра снимается лишь 120 Вт. Этой мощности не хватит даже для работы ноутбука. Даже самые лучшие панели обладают КПД на уровне 15–20 %.
- Для эффективной работы требуется вспомогательная техника. Аккумуляторы, инвертор, контроллер. Кроме того, желательно всё это оборудование на дачу разместить в отдельном помещении с хорошей вентиляцией.
Конечно, главный вопрос насколько затратно обустройство такой системы электроснабжения, да еще и применимо к дачным условиям? Из опыта специалистов, да и просто владельцев подобных систем вся конструкция может окупиться в течение 5–7 лет. Этот срок сокращается практически в два раз в регионах с высокой круглогодичной солнечной активностью. Понятно, что от самих панелей мало что зависит. Основной вопрос, какое количество солнечной энергии попадает на панели. Здесь в выигрыше оказываются системы с поворотными панелями. Чем больше солнца будет попадать на панели, тем быстрее окупится батарея.
С другой стороны надо учесть, что и мировая промышленность не стоит на месте, а постоянно развивается. Это приводит к устойчивой тенденции снижения себестоимости таких конструкций.
Так что со временем такая покупка — хорошее вложение для тех дачников, кто хочет и может себе позволить сэкономить на оплате счетов за электричество.
История развития
Свое развитие батареи солнечные начали еще в далеком XIX веке. Предпосылкой этому стали революционные исследования о преобразовании энергии Солнца в более материальную составляющую.
Первые солнечные панели имели КПД всего 1%, а их химической основой являлся селен. Первый вклад в развитие таких элементов питания внесли А. Беккерель, У. Смит, Ч. Фриттс.
Но использование всего 1% от всей энергии, поступающей на солнечную панель – это очень мало. Данные элементы не могли обеспечить бесперебойное питание техники, поэтому исследования продолжались.
В 1954 году трое ученых – Гордон Пирсон, Дэррил Чапин и Кэл Фуллер – изобрели батарею уже с КПД 4%. Она работала на кремнии, а впоследствии ее КПД было увеличено до 20%.
На данный момент солнечные батареи продуцируют только 1% от всей энергии в мире. Их в основном проводят в места труднодоступные для электрификации. Широко применяют этот источник питания в космической промышленности. Специалисты считают, что такому аккумулятору открыты все пути, ведь с каждым годом солнечная активность возрастает.
В наших широтах данные элементы питания устанавливают в частных домах при экономии энергопотребления и заботе об окружающей среде.
Устройство
Гибкие солнечные панели устроены особым образом. Их изготавливают из пленки различных полупроводников.
Материалы обычно применяют в качестве портативного зарядного устройства для гаджетов и небольшой переносной аппаратуры.
Если требуется большое количество энергии, используют рулонные панели с большой площадью модулей.
Главные отличия
Тонкие солнечные батареи и полугибкие пластины имеют ряд отличий от кристаллических устройств:
- маленькая толщина;
- гибкость;
- легкий вес.
Немного о технологии
Гибкие солнечные батареи изготавливают по такому принципу – на гибкую пластину, чаще всего полимерную, напыляют полупроводниковое соединение.
Некоторое время назад в качестве материала для покрытия основания использовали аморфный кремний. В результате получались аморфные солнечные батареи.
Однако такие элементы отличались низкой производительностью фотоэлементов. В результате они сменились материалами из селенидов и теллуридов. Это позволило существенно повысить производительность фотоэлементов.
Наибольшей популярностью пользуются гибкие солнечные батареи из меди-галлия-индия селенида. Вещества распыляются на основании один за другим или все вместе. Это позволяет получить тонкопленочные солнечные батареи с равномерными фотоэлементами.
Метод суспензии
Тонкие солнечные батареи производят еще одним способом – суспензии. Суть – использование суспензированных частиц оксидов металлов. Вещество для нанесения на поверхность доводят до нужных параметров, после чего используют по назначению.
Процесс изготовления солнечных элементов в этом случае походит на трафаретную печать, где суспензия – это чернила, а пленка – лист.
В качестве основания могут быть использованы такие материалы:
- пластик;
- стекло;
- фольга и другие.
Преимущества методики – фотоэлементы ложатся ровно и распределяются равномерно. Еще одно достоинство – низкие затраты. Недостаток – небольшой процент КПД.