Принцип действия
Эти устройства многие экологи называют источником энергии будущего. Дело в том, что они, если не считать само производство приборов, экологически безопасны.
На панель с отрицательным зарядом воздействует ультрафиолетовый свет, который способствует прогрессивному формированию дополнительных отрицательных электронов и так называемых «дырок». Воздействие электрического поля, находящегося в р- n переходе, начинается разделение положительно и отрицательно заряженных частиц.
Первые элементы уходят в верхний слой, а вторые — в нижний. В результате образуется разность потенциалов, или постоянное напряжение. Если вкратце описать дальнейший процесс, то здесь фотопреобразователь работает словно батарейка. И как только на него воздействует дополнительная нагрузка, в цепи появляется электрический ток, сила которого зависит от разных факторов, включая:
- Уровень инсоляции.
- Размер преобразователя.
- Тип фотоэлемента.
- Общее сопротивление электроприборов, которые присоединены к панели.
Принцип работы солнечных панелей
С конструкцией разобрались, теперь посмотрим, как работают солнечные панели. Как мы выяснили, панель представляет собой набор фотоэлектрических элементов, соединенных в батареи. Поэтому для понимания процесса будет достаточно рассмотреть принцип работы одного фотоэлемента.
По сути, фотоэлемент – обычный полупроводниковый диод, имеющий n- и p-слои, открытые для доступа света. При этом в n-слое присутствует избыток электронов, в p-слое – их недостаток. Под воздействием потока солнечной энергии электроны n-слоя полупроводника устремляются к пустующим местам в p-слое через n-p переход. Попав в p-слой, они стремятся обратно в n-слой, но переход обратно невозможен – из-за разности потенциалов между слоями n-p переход превратился в барьер. Чтобы туда попасть, они должны пройти через нагрузку, что они и делают, создавая электрический ток.
На рисунке цифрами обозначены:
- 1 – внешний прозрачный электрод;
- 2 – n-слой;
- 3 – p-слой;
- 4 – внутренний электрод.
Отличие фотоэлемента от обычного диода состоит еще и в специальных присадках, увеличивающих чувствительность кристалла к свету.
Комплектация батарей
О солнечных батареях множество людей думают ошибочно. Ведь сама по себе панель на крыше не может дать переменный ток.
Чтобы обеспечить жилище электричеством, придется приобрести:
- Собственно солнечные панели. Это тот элемент конструкции, который крепится на стены или крышу дома. При попадании кванта солнечного света кремниевые кристаллы начинают колебаться, и создается электрический ток.
- Аккумулятор. Энергия, которая не пошла на расход бытовых нужд, аккумулируется в этом приборе, и потом ночью или в ненастную погоду она расходуется.
- Контроллер напряжения. Этот элемент является скорее не обязательным, а желательным. Он повышает продолжительность жизни аккумулятора, сообщает о его предельно низком и высоком заряде.
- Инвертор, или преобразователь энергии. В аккумуляторе электрический ток находится в постоянном значении, а для бытовых нужд необходим переменный. Инвентор и совершает данное преобразование.
Как мы видим, солнечные панели – это лишь малая часть системы. Они сами состоят из более мелких элементов – модулей. Раз устройство данных элементов питания модульное, при необходимости посредством подсоединения составляющих вы можете добавить панели или убрать лишние.
Роль контроллера в батареях
Описанные выше фотоэлектрические преобразователи солнечной энергии могут быть достойной альтернативой для централизованных систем подачи электрической энергии, при условии, что их перестанут оснащать контроллерами, регулирующими степень заряда оборудования.
Предназначение таких элементов заключается в эффективном перераспределении получаемой энергии и дальнейшем направлении её к источнику потребления. Также эти детали способны сохранять полученный запас в аккумуляторе.
Сегодня распространены разные типы контроллеров, которые могут отличаться друг от друга степенью увеличения общей эффективности системы.
Кроме крупных, недешевых панелей в продаже предлагается множество доступных приборов, которые работают по такому же принципу. В последнее время получили популярность так называемые солнечные фонари, которые используются для декоративного освещения в ландшафтном дизайне.
Подобные осветительные приборы работают по тому же принципу: в верхней части размещена фотопластина. На протяжении солнечного дня эта деталь улавливает и преобразует солнечную энергию, которая затем сохраняется в небольшой батарее, размещенной у основания фонарика. Прибор расходует энергию в ночное время суток.
Где используются
Все рассмотренные варианты можно устанавливать в частном секторе, чтобы получать электроэнергию от солнца и сэкономить на энергоресурсах или даже добиться полной автономности. Что касается использования, нужно учесть несколько простых рекомендаций:
Монокристаллические и поликристаллические варианты лучше всего ставить на кровле или на земле, предварительно соорудив каркас под нужным углом. Желательно, чтобы угол наклона регулировался, так можно подстраиваться под солнце.
Пленочные модули можно располагать где угодно, как на стенах, так и на крышах
Они хорошо работают даже если лучи попадают на поверхность не под прямым углом, что очень важно.
В промышленных масштабах также отдают предпочтение пленочным батареям как более дешевым и простым в монтаже.
Пленочные варианты проще устанавливать при больших объемах работы.
Есть несколько разновидностей солнечных батарей, но около 90% рынка занимают традиционные кремниевые модели благодаря низкой цене и хорошим характеристикам. Можно выбрать и одно из полупроводниковых решений, но тогда придется потратить в полтора-два раза больше средств.
Принцип действия
Для отопления жилого дома или иного объекта могут быть использованы все виды солнечных коллекторов, однако принцип их работы, вне зависимости от конструкции и вида теплоносителя, является единым.
Принцип работы солнечного коллектора основан на способности материалов поглощать энергию солнца в видимом и невидимом, человеческому глазу, диапазонах, в связи с чем, внутри данного материала, начинаются физические процессы, молекулы начинают быстрее двигаться, материал (вещество) – нагревается. Тепло выделяемое материалами, на которые воздействуют солнечные лучи, передается теплоносителя для последующего использования.
Схематично, принцип работы различных видов устройств, можно отразить следующим образом:
- Плоский солнечный коллектор, работающий с использование жидкого теплоносителя:
- Плоский солнечный коллектор, работающий с использование воздуха:
- Вакуумный солнечный коллектор, с жидким теплоносителем:
Характеристика устройств
Ученым удалось обнаружить природные вещества, в которых происходит преобразование света в электроэнергию. Этот процесс они стали называть фотоэлектрическим эффектом. Впоследствии им удалось научиться управлять этим явлением. Потом благодаря полупроводниковым материалам они смогли создать небольшие эффективные приборы – фотоэлементы.
После этого было налажено производство миниатюрных преобразователей и эффективных гелиопанелей. КПД кремниевых панелей составляет 18–22%.
Устройство солнечного модуля
Из данных модулей собирают солнечные батареи, преобразующие фотоны солнечной энергии в постоянный ток, накапливающийся в аккумуляторах или трансформирующийся в переменный ток напряжением 220 V, необходимый для питания многих бытовых и промышленных электроприборов.
Такие источники питания незаменимы для удаленных районов, где нет централизованного электроснабжения или часто случаются перебои с электричеством. Кроме того, они позволяют экономить затраты на электроснабжение в быту и в некоторых отраслях промышленности.
Преимущества и недостатки солнечных батарей
Теперь поговорим о плюсах и минусах домашних гелиосистем.
Плюсы
- Это неиссякаемый и вседоступный источник энергии. Солнце есть всегда и в ближайшее время не собирается исчезать. Если солнце окончательно пропадет, то уже никого в мире не будет сильно волновать вопрос, где найти электроэнергию.
- По сравнению c ветряными генераторами электричества, панели абсолютно бесшумны.
- Сами панели износостойкие.
- Длительный (25–30 лет) срок службы.
- Установив такую систему один раз у вас не будет переживаний по поводу того, что поставщик электроэнергии придёт и отрежет ваш дом от подачи электричества или цены на услуги, внезапно подрастут.
- Вы всегда можете нарастить мощность гелиостации. Ну конечно тут главный вопрос в площади. Но в любом случае модульность таких систем позволяет в любой момент добавить и запитать в свою систему новые панели.
- Важный фактор экономия. При существующем стационарном подключении панели дают возможность снизить расходы на электроэнергию.
- Независимость от централизованной подачи электричества. Это особенно актуально в дачных поселках, где свет отключают внезапно и на длительное время.
- Вы станете еще одним человеком, который реально сохраняет чистоту атмосферы — это, с точки зрения экологии, абсолютно чистое устройство.
Недостатки
Надо признать, что и у гелиосистем есть свои минусы:
- Нельзя обеспечить бесперебойную работу. Если в летний период солнечная активность весьма высока, то в зимний период такие системы малоэффективны. Тучи и низкая облачность тоже влияют на производительность этих систем. Поэтому возникает необходимость продублировать гелиосистему традиционным источником электричества или применять гибридные гелиопанели. Не стоит забывать и о районе, в котором будут использоваться такие системы. В разных местностях совершенно разная солнечная активность. Поэтому установка солнечных элементов в большей мере должна быть скорректирована с учетом месторасположения вашей дачи.
- Самый большой минус — большие первоначальные финансовые расходы. Да и срок окупаемости вопрос довольно спорный и до конца не однозначен.
- Низкий уровень КПД. Тоже больной вопрос. С одного квадратного метра снимается лишь 120 Вт. Этой мощности не хватит даже для работы ноутбука. Даже самые лучшие панели обладают КПД на уровне 15–20 %.
- Для эффективной работы требуется вспомогательная техника. Аккумуляторы, инвертор, контроллер. Кроме того, желательно всё это оборудование на дачу разместить в отдельном помещении с хорошей вентиляцией.
Конечно, главный вопрос насколько затратно обустройство такой системы электроснабжения, да еще и применимо к дачным условиям? Из опыта специалистов, да и просто владельцев подобных систем вся конструкция может окупиться в течение 5–7 лет. Этот срок сокращается практически в два раз в регионах с высокой круглогодичной солнечной активностью. Понятно, что от самих панелей мало что зависит. Основной вопрос, какое количество солнечной энергии попадает на панели. Здесь в выигрыше оказываются системы с поворотными панелями. Чем больше солнца будет попадать на панели, тем быстрее окупится батарея.
С другой стороны надо учесть, что и мировая промышленность не стоит на месте, а постоянно развивается. Это приводит к устойчивой тенденции снижения себестоимости таких конструкций.
Так что со временем такая покупка — хорошее вложение для тех дачников, кто хочет и может себе позволить сэкономить на оплате счетов за электричество.
Виды солнечных батарей
Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.
Элементы из монокристаллического кремния
Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:
- из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
- после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
- получившийся брусок разрезается на пластины толщиной 0,3 мм;
- в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
- из готовых элементов собирается ячейка батареи.
Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.
Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.
Фотоэлементы из мульти-поликристаллического кремния
Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.
В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.
Фотоэлементы из аморфного кремния
В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.
КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.
Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.
Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.
Коллекторы: получение тепла из солнечной энергии
Солнечные коллекторы Солнечные батареи могут применяться для обогрева объектов, нагрева жидкости. Возможность получения тепла обусловлена способностью батареи накапливать энергию. Это позволяет повышать температуру теплоносителя в трубах, за счет чего обеспечивается не только нагрев жидкости, но и обогрев всего объекта. Солнечные коллекторы функционируют по определенной схеме. Их основные элементы конструкции:
- насосная станция;
- бак-аккумулятор;
- контроллер;
- трубы и фитинги.
Виды коллекторов:
- плоские: состоят из плоского абсорбера, покрытия, теплоизолирующего слоя;
- вакуумные (трубчатые): состоят из стеклянной колбы, теплоизоляционный материал заменен на вакуум, который заполняет емкость (в ней также находится абсорбер).
У второго варианта есть существенное преимущество – низкие теплопотери. По этой причине вакуумные коллекторы применяются повсеместно там, где не могут быть установлены плоские аналоги.
Экономическая обоснованность
Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4–5 лет. Но реальность более прозаична.
Принцип работы
Разъяснить особенности работы солнечной батареи достаточно сложно, но можно разобраться в общих моментах:
- Когда солнечный свет попадает на фотоэлементы, там начинается образование неравновесных электронно-дырочных пар.
- Из-за избытка электронов они начинают перемещаться в нижний слой полупроводника.
- Во внешней цепи возникает напряжение. Положительный полюс возникает на контакте р-слоя, а на контакте n-слоя появляется отрицательный.
- Если к фотоэлементам подключена аккумуляторная батарея, то получается замкнутый круг и постоянно движущиеся электроны обеспечивают постепенный заряд аккумулятора.
- Обычные кремниевые модули относятся к однопереходным элементам, которые могут генерировать энергию только от определенного спектра солнечного света. Именно из-за этого КПД оборудования невысокий.
- Чтобы решить проблему, изготовители разработали каскадные варианты, они могут брать энергию у разных лучей солнечного спектра. Это повышает КПД, но за счет высокой себестоимости производства цена таких панелей намного выше.
- Та энергия, которая не преобразовалась в электричество, превращается в тепло, поэтому солнечные батареи греются в процессе работы до 55 градусов, а полупроводниковые – до 180. Причем по мере нагревания эффективность работы солнечной батареи снижается.
Простейшая схема работы солнечной батареи.
Солнечные батареи для частного дома: характеристики
Для частного дома, оптимальным вариантом будут солнечные батареи выполненные на основе кремния. Конечно, есть и другие виды, изготовленные из редких дорогих материалов с более хорошими характеристиками. Но они практически не используются в бытовой сфере, из-за высокой стоимостью и длительным сроком окупаемости. Поэтому их затрагивать мы сегодня не будем.
Монокристаллические солнечные батареи
Монокристаллические солнечные батареи отличаются тёмно-синим цветом внешней поверхности. Этот оттенок достигнут за счёт использования в основе высококачественного и чистого кремния.
Монокристаллические солнечные батареи для частного дома, обладают рядом положительных характеристик:
- В первую очередь это высокий КПД с показателем 20-25%.
- Во вторых, панели имеют не большие размеры с относительно высокой мощностью. Если сравнивать с поликристаллическими солнечными батареями.
- Заявленный срок службы таких изделий не меньше 30 лет, при соблюдении правил эксплуатации.
Недостатков здесь не так и много, но их стоит упомянуть:
- В первую очередь, это высокая стоимость монокристаллических солнечных батарей и соответственно длительный период окупаемости.
- Повышенная чувствительность к пыли. Загрязнённая поверхность не принимает, а рассеивает свет по сторонам, соответственно показатель КПД существенно снижается.
Завышенная стоимость монокристаллических солнечных батарей, объясняется уникальным расположением элементов кремния. Кристаллы расположены под определённым углом и соответственно могут принимать солнечные лучи только перпендикулярного направления относительно поверхности батареи. Поэтому монокристаллические батареи поставляются с дополнительным оборудованием, которое автоматически регулирует угол наклона панелей в течение дня.
Из-за сложной конструкции и необходимости в постоянно прямом солнечном свете, монокристаллические батареи устанавливаются на открытой или высокой местности.
Поликристаллические солнечные батареи
Поликристаллические солнечные батареи отличаются неравномерным синим оттенком из-за использования кремния среднего качества. В данном случае кристаллы располагаются под разным углом, соответственно КПД поликристаллических солнечных батарей ниже чем у монокристаллических.
Так же стоит отметить преимущества поликристаллических солнечных батарей:
- В первую очередь это высокий КПД при рассеянных солнечных лучах.
- Возможность монтажа на любую плоскую поверхность без дополнительного поворотного механизма.
- Относительно не высокая стоимость, по сравнению с предыдущим вариантом.
- Довольно продолжительный период эксплуатации, не меньше 15 лет.
Давайте вместе рассмотрим недостатки поликристаллических солнечных батарей для частного дома:
- Не высокий уровень КПД, максимум 15%.
- Довольно объёмные и тяжёлые панели с довольно не высокой мощностью.
Если проанализировать российский рынок, то поликристаллические солнечные батареи завоевали большую популярность. Скорей всего это обусловлено простотой конструкции и не высокой стоимостью.
Аморфные солнечные батареи
Аморфные солнечные батареи отличаются от предыдущих моделей как по составу так и методу изготовления. В данном варианте кремнии наносится на поверхность панелей тонким сплошным слоем и покрывается защитной плёнкой. Такой способ изготовления мало затратный и соответственно уровень эффективности довольно низкий. Уровень КПД у данных моделей не превышает 10%.
Единственное преимущество аморфных солнечных батарей, в том что они изготавливаются и на гибком основании тоже. Что позволяет их устанавливать на кровлю сложной формы. Но такие варианты на сегодня стоят довольно дорого при не высокой мощности.
Обустройство системы отопления
В настоящее время набирает популярность инновационные отопительные системы, работающие на основе солнечных преобразователей. Это самостоятельные устройства с уникальными конструктивными и техническими параметрами, отличающимися от солнечных батарей.
В качестве основного рабочего элемента для отопительных систем используется коллектор, который принимает солнечный свет и автоматически преобразовывает его в кинетическое электричество. Площадь такой части варьируется от 30 до 70 квадратных метров. Чтобы зафиксировать коллектор нужно применять дополнительную технику, а для соединения пластин между собой используются металлические контакты.
Следующий компонент системы солнечного отопления — накопительный бойлер. Он обеспечивает эффективную трансформацию кинетической энергии в тепловую, и вызывает нагревание жидкости, объёмом до 300 литров. В некоторых случаях для поддержания оптимальной температуры воды используются дополнительные котлы на сухом топливе.
Завершающим узлом подобной системы являются напольные и настенные элементы, где по медным трубам циркулирует подогретая вода. За счёт низкой температуры запуска батарей и равномерной теплоотдачи, прогрев помещения осуществляется достаточно быстро.
Чтобы понять, как работают системы отопления дома на солнечных панелях, необходимо более подробно рассмотреть принцип их действия.
Между температурными показателями коллектора и накопительного элемента формируется определенная разница. Теплоноситель, в роли которого используется вода с антифризом, стремительно циркулирует по системе, в результате чего образуется кинетическая энергия.
После прохождения жидкости через отдельные слои системы, полученная энергия становится теплом, которое и обогревает помещение. Из-за таких особенностей в доме всегда сохраняется оптимальный температурный диапазон независимо от времени суток и года. Кстати, рынок таких систем постоянно расширяется, поэтому в ближайшем будущем они будут доступны для каждой среднестатистической семьи.
На что обратить внимание при покупке солнечных батарей для дома
Данная информация будет полезна, если вы решили перейти на солнечный источник энергии
Приобретая все комплектующие для такой системы, нужно знать, где можно сэкономить, а на что обратить особое внимание:
- Покупайте составляющие (панели, аккумулятор, инвертор) в конце зимы-начале весны. Как правило, магазины в это время предоставляют большие скидки.
- Не покупайте сразу много солнечных батарей. Помните, что эта система модульная, и добрать необходимое количество для обеспечения нужд бытовой техники очень просто.
- Желательно заменить все лампы накаливания в доме на светодиодные или LED. Они потребляют меньше энергии, а срок службы у них дольше.
- Для дома приобретайте солнечные батареи с выходным напряжением в 12 В. Именно такие значения подойдут для бытовой техники, очень мало приборов используют 24 В и 48 В. Все показатели напряжения вы можете найти в паспорте устройств.
При выборе солнечных батарей обратите внимание, что каждая должна быть помещена в защитный корпус из алюминия. Этот металл легкий, прочный, стойкий к коррозии
Сверху защитное стекло должно быть матовым, не давать глянца и бликов.
Обеспечивать свой дом уютом, теплом и не платить за электричество вполне возможно. Для этого нужно установить такую систему энергоснабжения. Но стоит учитывать, что она тоже требует значительных вложений и обладает рядом нюансов. Изучив все положительные и отрицательные стороны, мы надеемся, что вы сделаете правильный выбор.