Все подробности про изготовление вихревых теплогенераторов своими руками

Конструктивные особенности и принцип работы

На основе кавитационного теплогенератора механическая энергия движения воды (рабочей жидкости) преобразуется в тепло, которое используется для обогрева помещений любого назначения. Кавитация подразумевает образование пузырьков в жидкости, в результате разрушения которых вырабатывается тепловая энергия.

Принцип работы кавитатора:

  • рабочий поток перемещается по устройству, в котором обеспечивается давление при помощи насоса,
  • далее с повышением скорости происходит локальное снижение давления субстанции,
  • в жидкости образуются свободные места, заполняемые пузырьками.

Впоследствии в центре камеры потоки перемешиваются, и происходит процесс кавитации: пузырьки схлопываются, в результате механическая энергия преобразуется в тепловой потенциал. Это объясняется тем, что при формировании вихревого потока кавитационные разрывы приводят к нагреву жидкой среды.

Главное это двигатель

Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.

Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.

Чертеж вихревого теплогенератора.

Список инструментов и материалов:

  • угловая шлифовальная машинка;
  • сварочный аппарат;
  • электродрель;
  • набор сверл;
  • рожковые или накидные ключи на 12 и на 13;
  • болты, гайки, шайбы;
  • металлический уголок;
  • грунтовка, краска, кисть малярная.
  1. Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант — сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
  2. Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
  3. Сделайте покраску рамы.
  4. Просверлите отверстия в каркасе под болты и установите двигатель.

Гаситель вихрей

Да, мы сделаем приспособление с таким загадочным названием – гаситель вихрей. Он будет состоять из расположенных вдоль пластин, помещенный внутри обоих колец.

Посмотрим, что нам потребуется для работы.

  • Сварка.
  • Турбинка.
  • Лист стали.
  • Труба с толстыми стенками.

Труба должна быть меньшей, чем теплогенератор. Делаем из нее два кольца, примерно по 5 см каждое. Из листа вырезаем несколько полосок одного размера. Их длина должна составлять 1/4 длины корпуса устройства, а ширина такой, чтоб после сборки осталось свободное пространство внутри.

  1. Вставляем в тиски пластинку, навешиваем на одном ее конце металлические кольца и свариваем их с пластиной.
  2. Вынимаем пластину из зажима и поворачиваем другой стороной. Берем вторую пластину и помещаем ее в кольца таким образом, чтобы обе пластины размещались параллельно. Аналогичным образом закрепляем все оставшиеся пластины.
  3. Собираем вихревой генератор своими руками, а полученную конструкцию устанавливаем напротив сопла.

Отметим, что поле совершенствования устройства практически безгранично. К примеру, вместо указанных выше пластин мы можем применить проволоку из стали, скрутив ее предварительно в виде клубка. Кроме того, мы можем проделать дырки на пластинах различного размера. Конечно, обо всем этом нигде не упоминается, но кто сказал, что вы не можете использовать данные усовершенствования?

В заключение

И в качестве заключения – несколько дельных советов. Во-первых, все поверхности желательно защитить окрашиванием. Во-вторых, все внутренние детали стоит делать из толстых материалов, так как он (детали) будут постоянно находиться в достаточно агрессивной среде. И в-третьих, позаботьтесь о нескольких запасных крышках, имеющих разного размера отверстия. В дальнейшем вам будет подбирать необходимый диаметр, дабы добиться максимальной производительности устройства.

Вот такой, казалось бы, простой прибор позволит позабыть о привычном дорогостоящем отоплении

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов — это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Как самому сделать генератор

Первым трубчатый агрегат был разработанный Потаповым. Но патент на него он не получил, т.к. до сих пор обоснование работы идеального генератора считается неполными «идеальным», на практике также пытались воссоздать прибор Шаубергер, Лазарев. На данный момент принято работать по чертежам Ларионова, Федоскина, Петракова, Николая Жука.

Фото – Вихревой кавитационных генератор потапова

Перед началом работы нужно выбрать вакуумный или бесконтактный насос (подойдет даже для скважин) по своим параметрам. Для этого необходимо учесть следующие факторы:

Мощность насоса (производится отдельный расчет);
Потребная тепловая энергия;
Величина напора;
Тип насоса (повышающий или понижающий).

Несмотря на огромное разнообразие форм и видов кавитаторов, практически все промышленные и бытовые устройства выполнены в виде сопла, такая форма является наиболее простой и практичной. Кроме того, её легко модернизировать, благодаря чему значительно повышается мощность генератора

Перед началом работы обратите свое внимание на сечение отверстия между конфузором и диффузором. Его необходимо сделать не слишком узким, но и не широким, приблизительно от 8 до 15 см

В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, т.к. объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе.

Фото – Кавитационный теплогенератор

Кавитационные теплогенераторы систем отопления обязательно имеют камеры расширения. У них может быть различный профиль в зависимости от требований и необходимой мощности. В зависимости от этого показателя может меняться конструкция генератора.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Преимущества и недостатки

Как и любой другой прибор, теплогенератор кавитационного типа имеет свои положительные и отрицательные стороны.

Среди преимуществ можно выделить следующие показатели:

  • доступность;
  • огромная экономия;
  • не перегревается;
  • КПД стремящийся к 100% (другим типам генераторов крайне сложно достичь таких показателей);
  • доступность оборудования, что позволяет собрать прибор не хуже заводского.

Слабыми сторонами генератора Потапова считают:

  • объемные габариты, занимающие большую площадь жилой зоны;
  • высокий уровень шума мотора, при котором крайне сложно спать и отдыхать.

Генератор, используемый в промышленности, отличается от домашнего варианта лишь габаритами. Однако, иногда мощность домашнего агрегата настолько высока, что нет смысла его устанавливать в однокомнатной квартире, иначе минимальная температура при работе кавитатора будет не менее 35°С.

На видео интересный вариант вихревого теплогенератора на твердом топливе

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Виды генераторов

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды:

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. Кавитационный теплогенератор – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.

Последний вид теплогенераторов за последние 200 лет собрал вокруг себя массу споров и противоречий. Появились, как сторонники теории кавитации, так и ее противники. Но, так или иначе, кавитационные теплогенераторы получили широкое распространение в обогреве жилья.

Самым популярным теплогенератором, работающим по этому принципу, является генератор Потапова.

Описательная характеристика строения теплогенератора


Схема стационарного теплогенератора.

Представить, как выглядит теплогенератор Потапова можно, тщательно изучив схему его строения. Тем более, что состоит он из достаточно типовых деталей, и о чем идет речь, понять будет не сложно.

Итак, центральной и самой основательной частью теплогенератора Потапова является его корпус. Он занимает центральное положение во всей конструкции и имеет цилиндрическую форму, установлен он вертикально. К нижней части корпуса, его фундаменту, торцом присоединен циклон для зарождения в нем вихревых потоков и увеличения скорости продвижения жидкости. Поскольку установка в основе своего действия имеет большие скоростные явления, то в ее конструкции необходимо было предусмотреть элементы, тормозящие весь процесс для более удобного управления.

Для таких целей в противоположной стороне от циклона к корпусу присоединяется специальное тормозное устройство. Оно тоже цилиндрической формы, в центре его установлена ось. На оси по радиусам прикреплены несколько ребер, количеством от двух. Следом за тормозным устройством предусмотрено дно, снабженное выходным отверстием для жидкости. Далее по ходу отверстие преобразуется в патрубок.

Это основные элементы теплогенератора, все они расположены в вертикальной плоскости и плотно соединены. Дополнительно патрубок для выхода жидкости оснащен перепускным патрубком. Они плотно скреплены и обеспечивают контакт двух концов цепочки основных элементов: то есть патрубок верхней части соединен с циклоном в нижней части. В месте сцепления перепускного патрубка с циклоном предусмотрено добавочное малое тормозное устройство. К торцевой части циклона под прямым углом к оси основной цепочки элементов прибора присоединен инжекционный патрубок.

Инжекционный патрубок предусмотрен конструкцией устройства с целью соединения насоса с циклоном, приводящими и отводящими трубопроводами для жидкости.

Как изготовить

Для создания самодельного генератора тепла понадобится шлифовальная машинка, электродрель, а также сварочный аппарат.

Процесс будет происходить следующим образом:

  1. Сначала нужно отрезать кусок достаточно толстой трубы, общим диаметром 10 см, а длиной не более 65 см. После этого на ней нужно сделать внешнюю проточку в 2 см и нарезать резьбу.
  2. Теперь из точно такой же трубы необходимо сделать несколько колец, длиной по 5 см, после чего нарезается внутренняя резьба, но только с одной её стороны (то есть полукольца) на каждой.
  3. Далее нужно взять лист металла толщиной, аналогичной с толщиной трубы. Сделайте из него крышки. Их нужно приварить к кольцам с той стороны, где у них нет резьбы.
  4. Теперь нужно сделать в них центральные отверстия. В первой оно должно соответствовать диаметру жиклера, а во второй диаметру патрубка. При этом, с внутренней стороны той крышки, которая будет использоваться с жиклером, нужно сделать, используя сверло, фаску. В итоге должна выйти форсунка.
  5. Теперь подключаем ко всей этой системе теплогенератор. Отверстие насоса, откуда вода подается под давлением, нужно присоединить к патрубку, находящемуся возле форсунки. Второй патрубок соедините со входом уже в саму отопительную систему. А вот выход из последней подключите ко входу насоса.

Таким образом, под давлением, создаваемым насосом, теплоноситель в виде воды начнет проходить через форсунку. За счет постоянного движения теплоносителя внутри этой камеры он и будет нагреваться. После этого она попадает уже непосредственно в систему отопления. А чтобы была возможность регулировать получаемую температуру, нужно за патрубком установить шаровой кран.

Изменение температуры будет происходить при изменении его положения, если он будет меньше пропускать воды (будет находиться в полузакрытом положении). Вода будет дольше находиться и двигаться внутри корпуса, за счет чего её температура увеличится. Именно таким образом и работает подобный водонагреватель.

Смотрите видео, в котором даются практические советы по изготовлению вихревого теплогенератора своими руками:

Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.

Обзор цен

Конечно, кавитационный теплогенератор – это практически аномальный прибор, он почти идеальный генератор, купить его сложно, цена завышена. Предлагаем рассмотреть, сколько стоит кавитационный прибор отопления в разных городах России и Украины:

Кавитационные вихревые теплогенераторы имеют более простые чертежи, но по эффективности несколько уступают. На данный момент существует несколько компаний-лидеров рынка: роторный гидро-ударный насос-теплогенератор «Радекс», НПП «Новые технологии», электроударный «Торнадо» и электрогидроударный «Vektorplus», мини-прибор для частного дома (ЛАТР) TSGC2-3k (3 кВА) и беларусский Юрле-К.

Продажа производится в диллерских центрах и в магазинах-партнерах в России, Кыргизстане, Беларуси и прочих странах СНГ.

В связи с высокими ценами на промышленное отопительное оборудование многие умельцы собираются делать своими руками экономичный нагреватель вихревой теплогенератор.

Такой теплогенератор представляет собой всего лишь немного видоизмененный центробежный насос. Однако, чтобы собрать самостоятельно подобное устройство, даже имея все схемы и чертежи, нужно иметь хотя бы минимальные знания в данной сфере.

Принцип работы

Работает генератор следующим образом. Вода (или любой другой используемый теплоноситель) попадает в кавитатор. Электродвигатель затем раскручивает кавитатор, в котором при этом схлопываются пузырьки – это и есть кавитация, отсюда и название элемента. Так вся жидкость, которая в него попадает, начинает греться.

Электроэнергия, требуемая для работы генератора, тратится на три вещи:

  • На образование звуковых колебаний.
  • На то, чтобы преодолеть силу трения в устройстве.
  • На нагревание жидкости.

При этом как утверждают создатели устройства, в частности, сам молдаванин Потапов, для работы используется возобновляемая энергия, хотя не совсем понятно, откуда она появляется. Как бы то ни было, дополнительного излучения не наблюдается, следовательно, можно говорить чуть ли не о стопроцентном КПД, ведь почти все энергия тратится на нагрев теплоносителя. Но это в теории.

Видео

https://youtube.com/watch?v=QhSsqwPU2a8

Утепление генератора

Схема подключения теплогенератора к системе отопления.

Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.

Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.

  1. Соедините его при помощи замка, который используют жестянщики для водосточных труб.
  2. Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
  3. Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
  4. Поместите устройство в кожух, закройте крышками.

Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).

Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.

Статья по теме: Установка окон в каркасном доме: как выполнить правильный монтаж?

Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.

Схема стационарного теплогенератора.

Инструменты: сварочный аппарат, угловая шлифовальная машинка.

Материалы: листовой металл или полосовое железо, толстостенная труба.

Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.

  1. Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
  2. Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
  3. Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.

Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.

Теплогенератор своими руками (видео)

Кавитационный нагреватель достаточно интересный и экономный способ обогреть помещение. Он легко доступен и при желании может создаваться самостоятельно. Для этого нужно докупить необходимые материалы и сделать все в соответствии со схемами. И эффективность аппарата не заставит себя долго ждать.

Вихревой теплогенератор Потапова, или же сокращенно ВТП, был разработан специально для того, чтобы получать тепловую энергию с помощью всего лишь электрического двигателя и насоса. Такое устройство используется преимущественно в качестве экономного источника тепла.

Сегодня мы рассмотрим особенности конструкции этого устройства, а также как изготовить вихревой теплогенератор своими руками.

Инструмент, необходимый для сборки агрегата

С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий . Его называют прибором Потапова.

Однако даже для сборки этого устройства необходимо оборудование:

  1. Дрель и набор сверл для нее;
  2. Сварочный аппарат;
  3. Машинка для шлифовки;
  4. Ключи;
  5. Крепеж;
  6. Грунтовка и малярная кисть.

Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.

Этапы изготовления генератора

Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.

Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.

Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.


Собирать конструкцию можно двумя способами:

  • Используя болты и гайки;
  • При помощи сварочного аппарата.

В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.

Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.

Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции

При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя. Смотрим видео, этапы сборки теплогенератора:

Смотрим видео, этапы сборки теплогенератора:

Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.

После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.

Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.

Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.

Смотрим видео, конструкция после изготовления:

Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.

Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.

На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.

Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют.

Создание теплогенератора своими руками

Очевидно, что с нуля сделать теплогенератор практически невозможно. Для производства такой аппаратуры задействуется серьезный технологический процесс на современных предприятиях. Своими же руками можно собрать небольшую конструкцию, которая лучшим образом повторяет все особенности вихревого теплогенератора. Называется она теплогенератором Потапова. Её КПД составляет 93%.

Патрубок смешивания присоединяется к насосу напорного типа при помощи фланца. Насос подает жидкость с давлением 5-6 атмосфер. При попадании воды в коллектор создается своеобразный вихрь. Водный вихрь перемещается по спиральной трубе к «горячему» концу. На окончании патрубка находится донышко, в центре которого располагается небольшое отверстие от вывода горячей воды. Для контролирования потока горячей воды предусмотрено специальное тормозящее приспособление, которое располагается прямо перед донышком. Во время движения воды к выпрямителю, в осевом участке создается противоточное течение. Чтобы контролировать течение холодной воды, потребуется еще один дисковый выпрямитель потока. В том случае, если из жидкости выходит тепло, его необходимо направлять по байпасу, прямиком к «горячему» концу. Там вода смешивается с теплой жидкостью, используя смеситель.

Для работоспособности теплогенератора необходим двигатель. В нашем случае подойдет оборудование для подключения к сети 220 В. Сам тепловой генератор нужно закрепить на станине (неподвижная основа). Также нам потребуется следующее оборудование:

  • шлифовальная машинка;
  • дрель и набор сверл;
  • сварочный аппарат;
  • крепежные элементы (болты, гайки и т.д.);
  • грунтовка и кисть.

При помощи шлифовального круга необходимо нарезать угольники. Прямоугольная конструкция (см. чертеж) собирается очень просто. Такую аппаратуру можно собрать при помощи болтов и гаек, либо задействовав сварку. Конечно же, в первом случае придется проделать отверстия дрелью. Следует внимательно следить за всеми размерами, чтобы конструкция соответствовала всем необходимым параметрам.

Еще один угольник потребуется прикрепить к конструкции в виде поперечины. Это позволит закрепить двигатель на станине. Далее совершается покраска рамы. В созданном каркасе необходимо просверлить отверстия для установки конструкции.

Далее происходит установка насоса. Также следует рассчитать мощность, чтобы двигатель смог без проблем запустить насосную установку.

Подключение насоса к системе начинается с его присоединения отверстию, из которого вода подается под определенным давлением. Второй патрубок присоединяется непосредственно к системе отопления. Для регулировки температурного режима за патрубком потребуется установить запирающее устройство. Если его прикрыть, то температура в системе начнет подниматься.

Нередко устанавливаются и различные электронные системы контроля температуры, однако их стоимость достаточно высокая.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Труба Ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Особенности

Электростанция на дровах – изобретение далеко не новое, но современные технологии позволили несколько улучшить разработанные раньше устройства. Причем для получения электроэнергии используется несколько разных технологий.

К тому же, понятие «на дровах» несколько не точное, поскольку для функционирования такой станции подойдет любое твердое топливо (дрова, щепа, паллеты, уголь, кокс), в общем все, что может гореть.

Сразу отметим, что дрова, а точнее процесс их сгорания, выступает только в качестве источника энергии, обеспечивающего функционирование устройства, в котором происходит генерация электричества.

Основными достоинствами таких электростанций является:

  • Возможность использовать самое разное твердое топливо и его доступность;
  • Получение электроэнергии в любом месте;
  • Использование разных технологий позволяет получать электроэнергию с самыми разными параметрами (достаточной только для обычной подзарядки телефона и до запитки промышленного оборудования);
  • Может выступать и в качестве альтернативы, если перебои подачи электроэнергии – обычное дело, а также основным источником электричества.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий