Современные источники отопления дома
Электрические нагревательные приборы, к которым относятся тепловентиляторы, инфракрасные обогреватели, масляные радиаторы, тепловые пушки, «теплые полы» и другие, а также камины и печи чаще всего используют как вспомогательные источники отопления. Частный дом с системой воздушного отопления – чрезвычайная редкость.
Следует заметить, что есть общепринятые нормы удельной мощности котла в зависимости от климатических зон:
- W = 1,5 – 2,0 кВт – в Северных районах.
W = 1,2 – 1,5 кВт – в Центральных районах;
W = 0,7 – 0,9 кВт – в Южных районах;
С помощью формулы W кот. = S*W / 10 можно рассчитать мощность котла.
Расчет системы отопления дома включает в себя расчет мощности, при проведении которого следует учитывать следующие параметры: (См. также: Расчет котла отопления)
- S — общая площадь помещения, которое отапливается;
W – мощность котла (удельная) на 10 м3, которая определяется с учетом климатических особенностей региона.
Совет! С целью упрощения системы расчетов можно применить среднее значение удельной мощности котла (W), которое равно единице. Следовательно, нормативная мощность котла принимается из расчета 10 кВт на 100м2 помещения, которое отапливается. Например:
1) S = 100 м2 – площадь помещения, которое отапливается;
2) W = 1,2 кВт – удельная мощность Центральных районов.
W кот. = 100*1,2/10=12 кВт.
Рисунок 2: Проектирование системы отопления
Понятие гидравлического расчета
Определяющим фактором технологического развития систем отопления стала обычная экономия на энергоноситель. Стремление сэкономить заставляет тщательней подходить к проектированию, выбору материалов, способов монтажа и эксплуатации отопления для жилища.
Поэтому, если вы решили создать уникальную и в первую очередь экономную систему отопления для своей квартиры или дома, тогда рекомендуем ознакомится с правила расчета и проектирования.
Перед тем как дать определение гидравлического расчёта системы, нужно ясно и четко понимать, что индивидуальная система отопления квартиры и дома расположена условно на порядок выше относительно центральной системы отопления большого здания.
Персональная отопительная система базируется на принципиально ином подходе к понятиям тепла и энергоресурса.
Суть гидравлического расчета заключается в том, что расход теплоносителя не задаются заранее с существенным приближением к реальным параметрам, а определяются путем увязки диаметров трубопровода с параметрами давления во всех кольцах системы
Достаточно провести тривиальное сравнение этих систем по следующим параметрам.
- Центральная отопительная система (котельня-дом-квартира) основывается на стандартных типах энергоносителя – уголь, газ. В автономной системе можно использовать практический любое вещество, которое имеет высокую удельную теплоту сгорания, или же комбинацию из нескольких жидких, твёрдых, гранулированных материалов.
- ЦОС построена на обычных элементах: металлические трубы, “топорные” батареи, запорная арматура. Индивидуальная же система отопления позволяет комбинировать самые разные элементы: многосекционные радиаторы с хорошей теплоотдачей, высокотехнологичные термостаты, разные виды труб (ПВХ и медные), краны, заглушки, фитинги и конечно собственные более экономичные котлы, циркуляционные насосы.
- Если зайти в квартиру типичного панельного дома, построенного лет 20-40 назад, видим что система отопления сводиться к наличию 7-секционной батареи под окном в каждой комнате квартиры плюс вертикальную трубу через весь дом (стояк), с помощью которой можно “общаться” с соседями сверху/снизу. То ли дело автономная система отопления (АСО) – позволяет строить систему любой сложности с учётом индивидуальных пожеланий жильцов квартиры.
- В отличи от ЦОС, отдельная система отопления учитывает достаточно внушительный список параметров, которые влияют на передачу, расход энергии и утери теплоты. Температурный режим окружающей среды, требуемый диапазон температуры в помещениях, площадь и объём помещения, количество окон и дверей, назначение помещений и т.д.
Таким образом, гидравлический расчет системы отопления (ГРСО) – это условный набор вычисляемых характеристик отопительной системы, который предоставляет исчерпывающую информацию о таких параметрах, как диаметр труб, количество радиаторов и клапанов.
Данный тип радиаторов устанавливался в большинстве панельных домов на постсоветском пространстве. Экономия на материалах и отсутствие конструкторской идеи “на лицо”
ГРСО позволяет правильно выбрать водно-кольцевой насос (отопительного котла) для транспортировки горячей воды к конечным элементам системы отопления (радиаторам) и, в конечном результате, иметь максимально уравновешенную систему, что напрямую влияет на финансовые вложения в части отопления жилища.
Еще один тип отопительного радиатора для ЦОС. Это более универсальное изделие, которое может иметь любое количество рёбер. Так можно увеличить или уменьшить площадь теплообмена
Расчет отопительной системы
При планировании отопительной системы для частного дома наиболее сложным и ответственным этапом является проведение гидравлических расчетов – нужно определить сопротивление системы отопления.
Ведь, берясь самостоятельно как рассчитать объем системы отопления, так и далее планировать систему, мало кто знает, что предварительно необходимо произвести некоторые графически-проектные работы. В частности, следует определить и отобразить на плане отопительной системы такие параметры:
тепловой баланс помещений, в которых будут расположены отопительные приборы; тип наиболее подходящих отопительных приборов и теплообменных поверхностей, указать их на предварительном плане отопительной системы; наиболее подходящий тип отопительной системы, подобрать наиболее подходящую конфигурацию. Также следует создать подробную схему расположения нагревательного котла, трубопровода. выбрать тип трубопровода, определить необходимые для качественной работы дополнительные элементы (вентили, клапаны, датчики). Указать на предварительной схеме системы их расположение. создать полную аксонометричную схему. В ней следует указать номера участков, их продолжительность и уровень тепловой нагрузки. спланировать и отобразить на схеме основной отопительный контур
При этом важно учесть максимальный расход теплоносителя. Принципиальная схема отопления
Принципиальная схема отопления
Двухтрубная отопительная система
Для любой отопительной системы расчетным участком трубопровода является тот сегмент, диаметр на котором не изменяется и где происходит стабильный расход теплоносителя. Последний параметр вычисляется из теплового баланса помещения.
Для расчета двухтрубной системы отопления следует провести предварительную нумерацию участков. Начинается она с нагревательного элемента (котла). Все узловые точки подающей магистрали, в которых происходит разветвление системы, необходимо отмечать заглавными буквами.
Двухтрубная отопительная система
Соответственные узлы, расположенные на сборных магистральных трубопроводах, следует обозначать черточками. Места ответвления приборных веток (на узловом стояке) чаще всего обозначаются арабскими цифрами. Эти обозначения соответствуют номеру этажа (в случае, если внедрена горизонтальная отопительная система) или номеру стояка (вертикальная система). При этом в месте соединения потока теплоносителя данный номер обозначается дополнительным штрихом.
Для максимально качественного выполнения работы следует нумеровать каждый участок
При этом важно учитывать, что номер должен состоять из двух значений – начала и конца участка
Последовательность выполнения гидравлического расчета
1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.
Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.
В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.
2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:
а) заданный расход воды;
б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.
Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.
3. Определяется расчетное циркуляционное давление по формуле
, (5.1)
где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное
, (5.2)
где
– сумма длин участков главного циркуляционного кольца;
– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как
, (5.3)
где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.
Значение коэффициента можно определить из табл.5.1.
Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления
(),C | , кг/(м3К) |
85-65 | 0,6 |
95-70 | 0,64 |
105-70 | 0,66 |
115-70 | 0,68 |
– естественное давление, возникающее в результате охлаждения воды в трубопроводах .
В насосных системах с нижней разводкой величинойможно пренебречь.
Определяются удельные потери давления на трение
, (5.4)
где к=0,65 определяет долю потерь давления на трение.
5. Расход воды на участке определяется по формуле
(5.5)
гдеQ – тепловая нагрузка на участке, Вт:
(tг – tо) – разность температур теплоносителя.
6. По величинамиподбираются стандартные размеры труб .
6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.
При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.
7. Определяются потери давления на трение на расчетном участке, Па:
. (5.6)
Результаты расчета заносят в табл.5.2.
8. Определяются потери давления в местных сопротивлениях, используя или формулу:
, (5.7)
где– сумма коэффициентов местных сопротивлений на расчетном участке .
Значение ξ на каждом участке сводят в табл. 5.3.
Таблица 5.3 – Коэффициенты местных сопротивлений
№ п/п | Наименования участков и местных сопротивлений | Значения коэффициентов местных сопротивлений | Примечания |
9. Определяют суммарные потери давления на каждом участке
. (5.8)
10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце
. (5.9)
11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на
. (5.10)
Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.
Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.
12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.
Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.
Таблица 5.2 – Результаты гидравлического расчета для системы отопления
На схеме трубопровода | По предварительному расчету | По окончательному расчету | ||||||||||||||
Номер участка | Тепловая нагрузка Q, Вт | Расход теплоносителя G, кг/ч | Длина участка l,м | Диаметрd, мм | Скоростьv, м/с | Удельные потери давления на трение R, Па/м | Потери давления на трение Δртр, Па | Сумма коэффициентов местных сопротивлений∑ξ | Потери давления в местных сопротивлениях Z | d, мм | v, м/с | R, Па/м | Δртр, Па | ∑ξ | Z, Па | Rl+Z, Па |
Занятие 6
Пример №1
В жилом доме монтирован один общий прибор, а индивидуальные приборы в помещениях отсутствуют. При решении вопроса, как рассчитать отопление в квартире, заметим, что плата за отопление в жилом помещении осуществляется по формуле №3 Правил на основе показаний прибора учета на индивидуальное отопление, который установлен в квартире, или норматива потребления тепла, установленного для отопления в помещениях жилого типа. Все показания прибора учитываются в Гкал.
- Объем тепла по данным общедомового прибора составил 250 Гкал.
- Площадь дома общая, в которую включены все квартиры, а также помещения нежилого типа, составляет 7000 кв. метров.
- Площадь квартиры – 75 кв. метров.
- Тариф на теплоэнергию составляет 1400 руб. за 1 Гкал.
Расчет отопления по площади квартиры будет производиться при помощи использования такой схемы:
250 * 75 / 7000 * 1400 = 3750 рублей
Это был расчет первой составляющей квитанции, вторая составляющая будет высчитываться по формулам №10 и №14. По первой формуле вычисляется объем услуги, а по второй – размер платы в рублях. Чтобы выявить объем, нужно учесть площадь нежилых помещений и квартир. К примеру, размер площади составляет 6000 кв. метров.
Объем тепла будет произведен следующим вычислением:
250 * (1-6000 / 7000) * 75 / 6000 = 0,446428571 Гкал.
После этих расчетов можно посчитать плату за отопление:
3750 + 625 = 4375 руб.
Установка счетчика тепла в подвале многоквартирного дома
Выбираем трубы для системы отопления
Трубы для системы отопления
Итак, расчет отопления частного дома готов, можно переходить к подготовке материалов. Начинаем с труб. Для систем водяного отопления их существует три вида:
Стальные трубы — это уже прошлый век, потому что они отличаются рядом недостатков. К примеру, огромным весом, сложностью в проведении монтажных работ (необходимы знания и опыт, а также наличие специального оборудования, для работы на котором вам потребуется лицензия), неустойчивостью к коррозии, статическим электричеством и высокой ценой.
Медные трубы отличаются высокими показателями качества. В них может использоваться теплоноситель с температурой до +200С и давлением до 200 атм. Но при этом самостоятельно своими руками монтаж медных труб не провести. Здесь, как и в первом случае, понадобятся опыт и знания, оборудование и материалы (серебряный припой и прочее). Но самое главное, что отталкивает покупателей — это цена изделия. Уж очень она высока.
И самый популярный на сегодняшний день вариант — пластиковые трубы. Именно в этих изделиях соединились в оптимальном соотношении такие два важных показателя, как стоимость и качество. К тому же достоинств у пластиковых труб — хоть отбавляй:
- Простота монтажа, не требующая ни опыта, ни больших академических знаний.
- Простые инструменты и оборудование для проведения монтажных работ, с которыми может совладать даже новичок.
- Из них получается стопроцентно герметичная система, не пропускающая ни грамма воздуха.
- Малое гидравлическое сопротивление.
- Пластик — это антистатичный материал.
- При воздействии температур материал не изменяет своих показателей.
Этих достоинств вполне достаточно. Но именно возможность провести монтаж своими руками сегодня привлекает многих домашних мастеров, которые стремятся некоторые работы по строительству дома провести без привлечения специалистов.
Расчет мощности котла и теплопотерь.
Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:
- Разница температуры снаружи и внутри здания (ΔT);
- Теплозащитные свойства объектов дома (R);
Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов
Таблица 1. Теплозащитные свойства стен
Материал и толщина стены | Сопротивление теплопередаче |
Кирпичная стена толщина в 3 кирпича (79 сантиметров) толщина в 2.5 кирпича (67 сантиметров) толщина в 2 кирпича (54 сантиметров) толщина в 1 кирпича (25 сантиметров) | 0.592 0.502 0.405 0.187 |
Сруб из бревна Ø 25 Ø 20 | 0.550 0.440 |
Сруб из бруса Толщина 20см. Толщина 10см. | 0.806 0.353 |
Каркасная стена (доска +минвата + доска) 20 см. | 0.703 |
Стена из пенобетона 20см. 30см. | 0.476 0.709 |
Штукатурка (2-3 см) | 0.035 |
Потолочное перекрытие | 1.43 |
Деревянные полы | 1.85 |
Двойные деревянные двери | 0.21 |
Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)
Таблица 2. Тепловые расходы окон
Тип окна | RT | q. Вт/ | Q. Вт |
Обычное окно с двойными рамами | 0.37 | 135 | 216 |
Стеклопакет (толщина стекла 4 мм) 4-16-4 4-Ar16-4 4-16-4К 4-Ar16-4К | 0.32 0.34 0.53 0.59 | 156 147 94 85 | 250 235 151 136 |
Двухкамерный стеклопакет 4-6-4-6-4 4-Ar6-4-Ar6-4 4-6-4-6-4К 4-Ar6-4-Ar6-4К 4-8-4-8-4 4-Ar8-4-Ar8-4 4-8-4-8-4К 4-Ar8-4-Ar8-4К 4-10-4-10-4 4-Ar10-4-Ar10-4 4-10-4-10-4К 4-Ar10-4-Ar10-4К 4-12-4-12-4 4-Ar12-4-Ar12-4 4-12-4-12-4К 4-Ar12-4-Ar12-4К 4-16-4-16-4 4-Ar16-4-Ar16-4 4-16-4-16-4К 4-Ar16-4-Ar16-4К | 0.42 0.44 0.53 0.60 0.45 0.47 0.55 0.67 0.47 0.49 0.58 0.65 0.49 0.52 0.61 0.68 0.52 0.55 0.65 0.72 | 119 114 94 83 111 106 91 81 106 102 86 77 102 96 82 73 96 91 77 69 | 190 182 151 133 178 170 146 131 170 163 138 123 163 154 131 117 154 146 123 111 |
RT — сопротивление теплопередачи;
- Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;
четные цифры указывают на воздушное пространство в мм;
Ar — зазор в стеклопакете заполнен аргоном;
К – окно имеет наружное тепловое покрытие.
Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:
Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае
R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2
Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:
- Электрические котлы;
- Газовые котлы
- Нагреватели на твердом и жидком топливе
- Гибридные (электрические и на твердом топливе)
Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:
- Расчет мощности по площади помещений.
По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.
Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)
- Расчет мощности по объему помещений.
Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:
- На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
- На 0.9, если ваша квартира на первом или последнем этаже;
- Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.
Исходные данные для теплового расчета системы отопления
Прежде чем приступать к подсчетам и работе с данными, их необходимо получить
Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже
- Площадь постройки, высота до потолков и внутренний объем.
- Тип здания, наличие примыкающих к нему строений.
- Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
- Количество окон и дверей, как они обустроены, насколько качественно утеплены.
- Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
- Продолжительность отопительного сезона, средний минимум температуры в этот период.
- «Роза ветров», наличие неподалеку других строений.
- Местность, где уже построен или только еще будет возводиться дом.
- Предпочтительная для жильцов температура тех или иных помещений.
- Расположение точек для подключения к водопроводу, газу и электросети.
Теплопотери в доме
Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
оптимальная | допустимая | оптимальная | допустимая, max | оптимальная, max | допустимая, max | |
Для холодного времени года | ||||||
Жилая комната | 20÷22 | 18÷24 (20÷24) | 45÷30 | 60 | 0.15 | 0.2 |
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже | 21÷23 | 20÷24 (22÷24) | 45÷30 | 60 | 0.15 | 0.2 |
Кухня | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Туалет | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Ванная, совмещенный санузел | 24÷26 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Помещения для отдыха и учебных занятий | 20÷22 | 18÷24 | 45÷30 | 60 | 0.15 | 0.2 |
Межквартирный коридор | 18÷20 | 16÷22 | 45÷30 | 60 | Н/Н | Н/Н |
Вестибюль, лестничная клетка | 16÷18 | 14÷20 | Н/Н | Н/Н | Н/Н | Н/Н |
Кладовые | 16÷18 | 12÷22 | Н/Н | Н/Н | Н/Н | Н/Н |
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется) | ||||||
Жилая комната | 22÷25 | 20÷28 | 60÷30 | 65 | 0.2 | 0.3 |
Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями | от 5 до 10% |
«Мостики холода» через плохо изолированные стыки строительных конструкций | от 5 до 10% |
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) | до 5% |
Внешние стены, в зависимости от степени утепленности | от 20 до 30% |
Некачественные окна и внешние двери | порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания |
Крыша | до 20% |
Вентиляция и дымоход | до 25 ÷30% |
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q = S × 100
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
Q = S × h × 41 (или 34)
h – высота потолков (м);
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Подбор и монтаж отопительных приборов
Тепло в помещения от котла передается посредством отопительных приборов. Их подразделяют на:
- инфракрасные излучатели;
- конвективно-радиационные (все типы радиаторов);
- конвективные (ребристые).
Инфракрасные излучатели менее распространены, но считаются более эффективными, поскольку нагревают не воздух, а предметы, находящиеся в зоне действия излучателя. Для домашнего использования известны переносные инфракрасные обогреватели, которые преобразуют электрический ток в инфракрасное излучение.
Наибольшее распространение получили приборы из двух последних пунктов благодаря оптимальным потребительским качествам.
Для расчета требуемого количества секций отопительного прибора, необходимо знать величину теплоотдачи каждой секции.
На 1 м² примерно нужно 100 Вт мощности. К примеру, если мощность одной секции радиатора 170 Вт, то радиатором в 10 секций (1.7 кВт) можно обогреть площадь помещения в 17 м². При этом, высота потолка по умолчанию принимается не более 2.7 м.
Размещая радиатор в глубокую нишу под подоконником, вы уменьшаете теплоотдачу в среднем на 10%. При размещении сверху декоративного короба, потери тепла достигают 15-20%.
Придерживаясь нехитрых правил, можно повысить эффективность теплоотдачи радиаторов отопления:
- для максимальной нейтрализации потоков холодного воздуха теплым, радиаторы устанавливают строго под окнами, сохраняя расстояние между ними не менее 5 см.
- Центр окна и радиатора должны либо совпадать, либо отклоняться на величину не более 2 см;
- батареи в каждой комнате размещают на одном уровне по горизонтали;
- расстояние между радиатором и полом должно быть не менее 6 см;
- между задней поверхностью отопительного прибора и стеной должно быть не меньше 2-5 см.