Применение
Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.
Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами
При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения
Принцип работы
Работа любой термопары основывается на термоэлектрическом эффекте, который был открыт Т.И. Зеебеком в далёком 1821 году. Данный эффект заключается в том, что если последовательно соединить друг с другом два разнородных металлических проводника, образуя таким образом замкнутую электрическую цепь, и в одном месте соединения проводников произвести нагрев, то в цепи возникает электродвижущая сила (ЭДС). Данную электродвижущую силу называют термо-ЭДС. Под действием термо-ЭДС в замкнутой цепи начинает протекать электрический ток.
Как работает термопара.
Место нагрева обычно называют горячим спаем. Место, где нет нагрева – холодный спай. Если в разрыв цепи подключить гальванометр или микровольтметр, то можно измерить величину термо-ЭДС, которая будет составлять несколько мили- или микровольт. Значение термо-ЭДС будет зависеть от величины нагрева в месте соединения проводников и от величины температуры в месте соединения проводников, где нагрев не происходит. Т.е. значение термо-ЭДС зависит от разности температур между холодным и горячим спаем. Также термо-ЭДС зависит и от рода самих проводников.
Будет интересно Чему равна электроемкость конденсатора?
Таким образом, если место соединения разнородных проводников термопары нагреть, то между несоединёнными (свободными) концами проводников возникнет разность потенциалов, которую можно измерить электроизмерительным прибором. Благодаря современным преобразователям возникающую разность потенциалов можно преобразовать в определённое цифровое значение, т.е. вполне реально узнать значение температуры нагрева в месте соединения проводников термопары. Для того чтобы измерения были точными, температура холодного спая должна быть неизменной. Т.к. это не всегда возможно, используются специальные компенсационные схемы для компенсации температуры холодного спая.
Устройство термопары.
Конструкция устройства
Современные термопары изготавливаются различной формы и длины. По конструктивному исполнению их можно разделить на две группы:
- бескорпусные термопары;
- термопары с защитным кожухом.
Первые представляют собой изделие, у которого место соединения двух проводников не закрыто и не защищено от внешних воздействий. Такое исполнение позволяет достичь быстрого времени измерения температуры и низкой инертности. Второй тип термопары выпускается в виде зонда. Зонд представляет собой металлическую трубку с внутренним изолятором, выдерживающим высокую температуру. Внутрь зонда помещается термоэлектрический элемент термопары. Благодаря такой конструкции термоэлемент защищён от влияния агрессивных сред различных технологических процессов.
Термопара типа J.
Холодный спай
Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору. В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.
Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры. Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.
Термопара газовой плиты.
Рабочий спай термопары (горячий)
Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.
Из чего состоит термопара.
Подключение DS18B20 к Arduino
DS18B20 является цифровым датчиком. Цифровые датчики передают значение измеряемой температуры в виде определенного двоичного кода, который поступает на цифровые или аналоговые пины ардуино и затем декодируется. Коды могут быть самыми разными, ds18b20 работает по протоколу данных 1-Wire. Мы не будем вдаваться в подробности этого цифрового протокола, укажем лишь необходимый минимум для понимания принципов взаимодействия.
Обмен информацией в 1-Wire происходит благодаря следующим операциям:
- Инициализация – определение последовательности сигналов, с которых начинается измерение и другие операции. Ведущее устройство подает импульс сброса, после этого датчик должен подать импульс присутствия, сообщающий о готовности к выполнению операции.
- Запись данных – происходит передача байта данных в датчик.
- Чтение данных – происходит прием байта из датчика.
Для работы с датчиком нам понадобится программное обеспечение:
- Arduino IDE;
- Библиотека OneWire, если используется несколько датчиков на шине, можно использовать библиотеку DallasTemperature. Она будет работать поверх OneWire.
Из оборудования понадобятся:
- Один или несколько датчиков DS18B20;
- Микроконтроллер Ардуино;
- Коннекторы;
- Резистор на 4,7 кОм (в случае подключения одного датчика пойдет резистор номиналом от 4 до 10K);
- Монтажная плата;
- USB-кабель для подключения к компьютеру.
К плате Ардуино UNO датчик подключается просто: GND с термодатчика присоединяется к GND Ардуино, Vdd подключается к 5V, Data – к любому цифровому пину.
Простейшая схема подключения цифрового датчика DS18B20 представлена на рисунке.
В режиме паразитного питания контакт Vdd с датчика подключается к GND на Ардуино – в этом случае пригодятся только два провода. Работу в паразитном режиме лучше не использовать без необходимости, так как могут ухудшиться быстродействие и стабильность.
Установка
Существуют определенные правила по выбору места размещения и количества извещателей тепловых в системе пожарной сигнализации в конкретном помещении. Их устанавливают также и в комплексе с извещателями, определяющими другие факторы пожара.
Точечные извещатели тепловые размещают преимущественно под перекрытиями, но возможны и другие варианты, когда осуществить данное требование сложно по техническим причинам. Допускается их размещение на несущих конструкциях.
На стенах точечные извещатели устанавливают на расстоянии 0,5 м от угла и в отдалении от перекрытий. Также на место размещения извещателей влияют параметры защищаемого помещения – высота потолка, форма перекрытия. Все нестандартные ситуации, связанные с монтажом, требуют дополнительных расчетов по действующим нормам пожарной безопасности. Для всех устройств обеспечивают надежные крепления и устойчивость. На выбор места влияют и воздушные потоки от канализации.
Нельзя устанавливать точечный извещатель тепловой на расстоянии менее 0,5 метров от светильников и остальных предметов. Расположение таких устройств относительно друг друга зависит от данных в нормативных документах. Площадь защищаемой зоны извещателей также указана в таблицах и зависит от типа и конструктивных особенностей. Если устройства комбинированы, например тепловые и дымовые датчики находятся вместе, то их считают за одну единицу.
Допускается использование продукции, которая прошла испытания перед выпуском и имеет сертификат соответствия. Установленным требованиям в стандартах должен отвечать каждый извещатель пожарный тепловой. На нем производитель обязан указывать тип и класс, а в технической документации описывать подробные характеристики.
При установке нельзя пренебрегать данными из этих документов и увеличивать защищаемую зону. Также тепловые извещатели вне зависимости от принципа действия рассчитаны на конкретные климатические зоны, что учитывается при их изготовлении.
Электрические котлы
Достаточно распространённая альтернатива газовым и твердотопливным котлам. Масса преимуществ, большой КПД, но большой срок окупаемости. Подключение простое, как и у газовых котлов, но без подвода холодной воды. Предусмотрено регулирование температуры и защита от перегрева.
Механический таймер котла
При помощи простого механического таймера электрического котла возможны три варианта запуска системы центрального отопления:
- Котёл выключен;
- Котёл подаёт тёплую воду;
- Котёл включается и выключается в установленное время.
Механические таймеры обычно имеют большой круглый циферблат с 24-часовой шкалой в центральной части. Поворачивая диск, можно установить нужное время, а затем оставить его в таком положении. Включение котла будет происходить в нужное время. Внешняя часть состоит из набора вкладок 15-минутного периода, которые вставлены для удобства регулировки работы и настройки режимов. Возможна экстренная перенастройка, которая выполняется при включённом в сеть котле.
Механические таймеры просты в настройке, но при этом котёл всегда включается и выключается в то же время каждый день, а это может не удовлетворить хозяев, если семья большая, и банные процедуры проводятся несколько раз в день в разное время.
Описание датчика DS18B20 для Arduino
DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.
Микросхема имеет три выхода, из которых для данных используется только один, два остальных – это земля и питание. Число проводов можно сократить до двух, если использовать схему с паразитным питанием и соединить Vdd с землей. К одному проводу с данными можно подключить сразу несколько датчиков DS18B20 и в плате Ардуино будет задействован всего один пин.
Где купить датчик
Влагозащищенный датчик температуры DS18B20 с длиной провода 1 м от надежного магазина | Комплект из 10 микросхем DS18B20 TO92 | Модуль DS18B20 для удобного подключения к Ардуино от Keyestudio |
Беспроводной модуль DS18B20 на ESP8266 ESP-01 ESP-01S для проектов умного дома | Шилд датчика DS18B20 для платы D1 MINI – беспроводная передача данных | Датчик DS18B20 с модулем для подключения к Ардуино |
Особенности цифрового датчика DS18B20
Погрешность измерения не больше 0,5 С (для температур от -10С до +85С), что позволяет точно определить значение температуры. Не требуется дополнительная калибровка.
Температурный диапазон измерений лежит в пределах от -55 С до +125 С.
Датчик питается напряжением от 3,3В до 5В.
Можно программно задать максимальную разрешающую способность до 0,0625С, наибольшее разрешение 12 бит.
Присутствует функция тревожного сигнала.
Каждое устройство обладает своим уникальным серийным кодом.
Не требуются дополнительные внешние элементы.
Можно подключить сразу до 127 датчиков к одной линии связи.
Информация передается по протоколу 1-Wire.
Для присоединения к микроконтроллеру нужны только 3 провода.
Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода
Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.
Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.
Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.
Во время включения питания датчик находится в состоянии покоя. Для начала измерения контроллер Ардуино выполняет команду «преобразование температуры». Полученный результат сохранится в 2 байтах регистра температуры, после чего датчик вернется в первоначальное состояние покоя. Если схема подключена в режиме внешнего питания, микроконтроллер регулирует состояние конвертации. Во время выполнения команды линия находится в низком состоянии, после окончания программы линия переходит в высокое состояние. Такой метод не допустим при питании от паразитной емкости, так как на шине постоянно должен сохраняться высокий уровень сигнала.
Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.
Какие бывают крепежи
Дает возможность оперативно и без сложностей устанавливать термокабель там, где нужно.
Его плюс в том, что его не придется демонтировать при смене или ремонте кабеля.
Крепеж с замком TwistLock.
Его применяют для монтажа в кабельных лотках, на стеллажах в складских помещениях, на бетонных стенах и крышах.
Кабельный хомут.
Нужен для монтажа термокабеля на промышленных и коммерческих объектах.
Хомут надежно фиксирует кабель и не дает ему возможность вибрировать.
Самоклеящаяся клипса.
Используют при температуре от -40 до +85 градусов Цельсия. Обладает прорезью для винта.
Такой элемент дает возможность быстро отсоединить и заново фиксировать термокабель.
Кабельный зажим.
Представляет собой самый универсальный крепеж и применяется для монтажа датчиков к стене, потолку и в любом углу.
Выдерживает высокие и низкие температуры.
Держатель для плоских стяжек.
Применяют для монтажа термокабеля на бетонных и кирпичных потолках и стенах.
L-образный кронштейн.
Гарантирует, что кабель будет закреплен надежно.
Благодаря специальным отверстиям возможна регулировка положения термокабеля по высоте.
L-образная скоба.
Используется для монтажа на цистернах для содержания нефтепродуктов с плавающей крышкой, а также там, где нужно закрепить датчик на дистанции от потолка или стены.
Балочный зажим.
Его предназначение — присоединение термокабеля к балочным конструкциям.
Допускается применение совместно с монтажным зажимом.
Типовые конструкции платиновых термосопротивлений
Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.
Конструктивное исполнение «Strain free»
Обозначения:
- А – Выводы термоэлектрического элемента.
- В – Защитный корпус.
- С – Спираль из платиновой проволоки.
- D – Мелкодисперсный наполнитель.
- E – Глазурь, герметизирующая ЧЭ.
Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.
На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.
Исполнение Hollow Annulus.
Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий
Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.
Пример исполнения «Hollow Annulus»
Обозначения:
- А – Выводы с ЧЭ.
- В – Изоляция выводов ЧЭ.
- С – Изолирующий мелкодисперсный наполнитель.
- D – Защитный корпус датчика.
- E – Проволока из платины.
- F – Металлическая трубка.
ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.
Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.
Пленочное исполнение (Thin film).
Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.
Миниатюрный пленочный датчик
Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).
Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.
Стеклянная изоляция спирали.
В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.
Дифференциальный
Быстрее реагируют на происходящие в заданном объеме изменения дифференциальные извещатели. В основе принципа их действия лежит контроль над скоростью возрастания температуры, датчик срабатывает при превышении заданной скорости.
Технически это реализуется путем использования двух термоэлементов. Один располагается снаружи, а второй непосредственно внутри корпуса прибора и не контактирует с окружающей средой.
Ток с обеих цепей приходит на дифференциальный усилитель, на выходе которого производится сигнал, равный разности принимаемых на входе величин. В обычных условиях на обе термопары воздействует практически равная температура и сигнал на выходе усилителя мал. При пожаре баланс на входе стремительно изменяется, и пропорционально этому увеличивается сигнал. Достижение сигналом усилителя заданной величины провоцирует формирование сигнала тревоги теплового дифференциального извещателя.
Назначение теплового извещателя
Тепловые пожарные извещатели или тепловые датчики предназначены для обнаружения в радиусе своего действия источников загорания и подачи сигнала тревоги на пульт управления. Принцип действия простейшей системы пожарного контроля можно представить, как электрическую цепь, разорванную контактами теплового реле.
При возникновении пожара, контакты под действием высокой температуры замыкаются и тем самым подают ток на пульт дежурного.
Нынешние системы с тепловыми извещателями заметно усложнились, но и фактор несрабатывания значительно снизился. Датчики всегда размещаются на потолке, над местами возможного возгорания, так как именно вверху концентрируется горячий воздух.
В отличие от дымовых устройств, где фактор срабатывания зависит от цвета дыма, его компонентов или чистоты воздуха в помещении, тепловые датчики всегда реагируют только на установленный порог температуры, начинающийся от 50
°
С и нетребовательны к уровню содержания пыли.
Термистор
Термистор — это чувствительный резистор, изменяющий свое физическое сопротивление с изменением температуры. Как правило, термисторы изготавливаются из керамического полупроводникового материала, такого как кобальт, марганец или оксид никеля и покрываются стеклом. Они представляют собой небольшие плоские герметичные диски, которые сравнительно быстрое реагируют на любые изменения температуры.
За счет полупроводниковых свойств материала, термисторы имеют отрицательный температурный коэффициент (NTC), т.е. сопротивление уменьшается с увеличением температуры. Однако, есть также термисторы, с положительным температурным коэффициентом (ПТК), их сопротивление возрастает с увеличением температуры.
Преимущества термисторов
- Большая скорость реагирования на изменения температуры, точность.
- Низкая стоимость.
- Более высокое сопротивление в диапазоне от 2,000 до 10,000 ом.
- Гораздо более высокая чувствительность (~200 ом/°C) в пределах ограниченного диапазона температур до 300°C.
Зависимости сопротивления от температуры
Зависимость сопротивления от температуры выражается следующим уравнением:
где A, B, C — это константы (предоставляются условиями расчёта), R — сопротивление в Омах, T — температура в Кельвинах. Вы можете легко рассчитать изменение температуры от изменения сопротивления или наоборот.
Как использовать термистор?
Термисторы оцениваются по их резистивному значению при комнатной температуре (25°C). Термистор-это пассивное резистивное устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети.
Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание.
Следовательно, его выходное напряжение может быть рассчитано следующим образом:
При 25°C, RNTC = 2200 Ом;
При 80°C, RNTC = 50 Ом;
Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры
Выходное напряжение на резисторе и температура линейно связаны.
Самодельный внешний терморегулятор для котла: инструкция
Ниже представлена схема устройства самодельного терморегулятора для котла, которая собрана на микросхемах Atmega-8 и серии 566, жидкокристаллическом дисплее, фотоэлементе и нескольких температурных датчиков. Программируемая микросхема Atmega-8 и отвечает за соблюдение заданных параметров уставок терморегулятора.
Схема самодельного внешнего терморегулятора для котла
Собственно говоря, данная схема включает или выключает отопительный котёл при понижении (повышении) температуры наружного воздуха (датчик U2), а также выполняет эти действия при изменении температуры в комнате (датчик U1). Предусмотрена корректировка работы двух таймеров, которые позволяют регулировать время указанных процессов. Кусок схемы с фоторезистором влияет на процесс включения котла по времени суток.
Датчик U1 стоит непосредственно в комнате, а датчик U2 на улице. Подключается к котлу и устанавливается рядом с ним. При необходимости можно добавить электрическую часть схемы, позволяющую включать отключать агрегаты большой мощности:
Электрическая часть схемы, позволяющая включать отключать агрегаты большой мощности
Ещё одна схема терморегулятора с одним параметром регулирования на базе микросхемы К561ЛА7:
Схема терморегулятора с одним параметром регулирования на базе микросхемы К561ЛА7
Собран терморегулятор на базе микросхемы К651ЛА7 отличается простотой и лёгкостью при регулировке. Наш термостат – это специальный терморезистор, который значительно уменьшает сопротивление при нагревании. Данный резистор включён в сеть делителя напряжения электричества. В этой цепи также расположен резистор R2, при помощи которого мы и можем устанавливать необходимую температуру. На основе такой схемы можно сделать термостат для любого котла: Бакси, Аристон, Эвп, Дон.
Еще одна схема на терморегулятора на базе микроконтроллера:
Схема на терморегулятора на базе микроконтроллера
Устройство собрано на базе микроконтроллера PIC16F84A . Роль датчика выполняет цифровой термометр DS18B20. Малогабаритное реле управляет нагрузкой. Микропереключатели задают температуру, которая высвечивается на индикаторах. До сборки потребуется запрограммировать микроконтроллер. Сначала сотрите все с чипа и потом перепрограммируйте, а далее произведите сборку и пользуйтесь на здоровье. Устройство не капризное и работает нормально.
Стоимость деталей 300-400 рублей. Аналогичная модель регулятора стоит в пять раз дороже.
Несколько советов напоследок:
- хоть к большинству моделей и подходят разные варианты термостатов, все же желательно, чтобы терморегулятор для котла и сам котёл были произведены одним производителем, это значительно упростит монтаж и сам процесс эксплуатирования;
- перед покупкой такого оборудования нужно просчитывать площадь помещения и необходимую температуру, чтобы избежать «простоев» техники, и смены проводки в связи с подключением приборов более высокой мощности;
- перед установкой оборудования нужно позаботиться о теплоизоляции помещения, иначе высокие теплопотери будут неизбежны, а это дополнительная статья расходов;
- если, неуверены, что нужно приобретать дорогостоящую технику, то можно провести потребительский эксперимент. Приобрести более дешёвый механический термостат, отрегулировать его и посмотреть результат.
На чтение: 6 минут Нет времени?
Автоматизация отопительного оборудования применяется для удобства управления, экономного потребления энергетических ресурсов. Чтобы правильно использовать терморегулятор для котла отопления (регулятор температуры) надо изучить современные инженерные решения. Пригодится обзор актуальной ситуации рынка. Также необходимо оценить возможность выполнения монтажных операций самостоятельно, без обращения к дорогим профессиональным услугам.
Читайте в статье
Параметры выбора
Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.
Диапазон рабочей температуры
Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.
Условия проведения замеров
Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.
Время работы до калибровки или замены
Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.
Величина сигнала выхода
Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.
Другие технические данные
Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных
Погрешность
Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.
Разрешение
Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.
Напряжение
На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.
Время сработки
Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.
Плюсы и минусы
Любые технические устройства обладают определёнными преимуществами и возможными недостатками. Тепловые пожарные извещатели не являются исключением. В списке достоинств можно рассмотреть следующие характеристики:
- отсутствие чувствительности к повышенному уровню запыления конструкции датчика и общей влажности в помещении;
- лёгкость монтажа, простота настройки системы, а также возможность индивидуальной замены вышедшего из строя датчика;
- невысокая цена;
- длительный срок эксплуатации;
- низкое потребление мощности;
- помехоустойчивость;
- отсутствие необходимости частых технических проверок системы.
К списку недостатков можно отнести лишь пару факторов:
- в редких случаях из-за технического сбоя датчик может отправить ложный вызов на пульт дежурного пожарной станции;
- высокий уровень инерционности.
Монтаж теплового противопожарного датчика
Некоторые видов извещателей допускают собственноручную установку. К примеру, беспроводные, который достаточно зафиксировать на нужной поверхности и активировать (крепеж зависит от модели аппарата).
Но, в основной своей массе, монтаж подобного оборудования требует присутствия специалистов.
Схема подключения имеет обозначение двух видов — треугольная и квадратная. Второй тип является оптимальным и наиболее распространенным.
При выборе детектора пожарной безопасности, необходимо четкое обозначение целей и места применения системы, дабы избежать неприятных последствий, в случае сбоев в ее работе.
Акустические датчики
Крайне простые приборы, занимающиеся измерением скорости звука в различных средах. Известно, что этот параметр во многом зависит от температуры. При этом следует учитывать и другие параметры измеряемой среды. В качестве одного из сценариев использования можно назвать измерение температуры воды. Датчик выдает данные, на основе которых можно сделать расчет, для которого также понадобится знать изначальные сведения об измеряемой среде.
Преимуществами такого метода считается возможность использования его в закрытых емкостях. Обычно используется там, где нет прямого доступа к измеряемой среде. Основные сферы-потребители данного способа по вполне закономерным причинам — это медицина и промышленность.
Где используется
Где мы можем его поставить?
Наш датчик подходит для использования в:
- торгово-развлекательных заведениях;
- производственных цехах;
- многоквартирных, частных жилых домах, общежитиях;
- открытых площадках;
- образовательных учреждениях;
- больших складских помещениях.
Тепловой извещатель пожарный (ИП) незаменим на больших открытых территориях,
а также там, где при возгорании выделяется большое количество тепла.
Но его нельзя устанавливать в помещениях с возможными перепадами температуры.
Не подойдут они и при наличии радиоактивных излучений и щелочных материалов в охраняемой зоне.
Все это приводит к ложным сработкам или разрушению конструкции извещателя.
Контактные
Контактный тепловой пожарный извещатель предполагает наличие стального проводника внутри или нескольких. Они покрыты специальным веществом, реагирующим на изменение температурного режима. Он должен быть легкоплавким.
Нагрев чувствительного элемента контактного извещателя происходит из-за реакции покрытия при достижении определенных значений температуры окружающей среды. Происходит замыкание, а приемо-контрольные устройства оценивают сопротивление на данном участке.
Контактные извещатели просты в эксплуатации и имеют длительный срок службы. Их легко устанавливать, они практически не восприимчивы к пыли, повышенной влажности. Однако температурные диапазоны у них не широкие, поэтому выбор объектов установки для них ограничен. В сравнении с остальными типами недорогие и надежные. Тепловые датчики не меняют на новые.