Таблица и применение коэфициента теплопроводности строительных материалов

От чего зависит величина теплопроводности?

От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.

Наглядный пример демонстрирует свойство теплопроводности

На данный показатель оказывают влияние следующие параметры:

  • более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
  • пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
  • при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.

Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении

Расчет многослойной конструкции

При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

МатериалR, (м2 * °C)/Вт
Железобетон0,58
Керамзитобетонные блоки1,5-5,9
Керамический кирпич1,8
Силикатный кирпич1,4
Газобетонные блоки3,4-12,29
Сосна5,6
Минеральная вата14,3-20,8
Пенополистирол20-32,3
Экструдированный пенополистирол27,8
Пенополиуретан24,4-50

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Вес и плотность минваты влияет на качество утепления

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Способность держать форму

Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

стены – 30%; крышу – 30%; двери и окна – 20%; полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности материалов

МатериалТеплопроводность материалов, Вт/м*⸰СПлотность, кг/м³
Пенополиуретан0,02030
0,02940
0,03560
0,04180
Пенополистирол0,03710-11
0,03515-16
0,03716-17
0,03325-27
0,04135-37
Пенополистирол (экструдированный)0,028-0,03428-45
Базальтовая вата0,03930-35
0,03634-38
0,03538-45
0,03540-50
0,03680-90
0,038145
0,038120-190
Эковата0,03235
0,03850
0,0465
0,04170
Изолон0,03133
0,03350
0,03666
0,039100
Пенофол0,037-0,05145
0,038-0,05254
0,038-0,05274

Экологичность.

Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

Пожарная безопасность.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что  эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

Долговечность.

  Как утеплить стены минватой: общие правила

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату  в первые годы службы значительно снижают свою эффективность.  Зато пенополиуретан обладает сроком службы свыше 50 лет.

Выбираем кирпич: о «теплых» и «холодных» стройматериалах

Кирпич обладает долговечностью, механической прочностью, морозостойкостью, хорошими звукоизоляционными свойствами и безопасен с точки зрения экологии. Все эти качества делают кирпич одним из самых востребованных стройматериалов на рынке

Но, есть и ещё одно важное свойство кирпича — его теплотехнические параметры. Ведь именно теплопроводность кирпича, из которого выложены стены, влияет на микроклимат помещения в этом здании

Немного физики или от чего зависит теплопроводность кирпича

Теплопроводность — это способность материала проводить тепло через свой объём. Количественно выражается она коэффициентом теплопроводности (λ, «лямбда») и определяется в Вт/м². Проще говоря, чем меньше теряется энергии, тем лучше, а значит, чем меньше коэффициент λ, тем «теплее» материал. Фактически на теплопроводность влияет плотность кирпича. Чем она меньше, тем меньше теплопроводность. Самый прочный и тяжелый клинкерный кирпич имеет самый высокий коэффициент λ, а лёгкий и менее прочный керамический, соответственно, самый низкий коэффициент теплопроводности.

Виды кирпича и их коэффициент проводимости тепла

В строительстве могут быть использованы разные виды кирпича. Перед тем, как приступить к возведению дома, имеет смысл узнать, насколько «теплыми» или «холодными» являются наиболее востребованные виды этого керамического материала.

  • Клинкерный — самый прочный и тяжелый кирпич с высоким коэффициентом теплопроводности — 0,8-0,9.
  • Силикатный кирпич — легкий кирпич, имеет меньший коэффициент теплопроводности — 0,4.
  • С техническими пустотами — 0,66.
  • Полнотелый кирпич — 0,8.
  • Щелевой кирпич — 0,34-0,43;
  • Кирпич поризованный — 0,22;

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Приложение А (обязательное)

Таблица А.1

Материалы (конструкции)

Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации

А

Б

1 Пенополистирол

2

10

2 Пенополистирол экструзионный

2

3

3 Пенополиуретан

2

5

4 Плиты из резольно-фенолформальдегидного пенопласта

5

20

5 Перлитопластбетон

2

3

6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс»

5

15

7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс»

8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна)

2

5

9 Пеностекло или газостекло

1

2

10 Плиты древесно-волокнистые и древесно-стружечные

10

12

11 Плиты фибролитовые и арболит на портландцементе

10

15

12 Плиты камышитовые

10

15

13 Плиты торфяные теплоизоляционные

15

20

14 Пакля

7

12

15 Плиты на основе гипса

4

6

16 Листы гипсовые обшивочные (сухая штукатурка)

4

6

17 Изделия из вспученного перлита на битумном связующем

1

2

18 Гравий керамзитовый

2

3

19 Гравий шунгизитовый

2

4

20 Щебень из доменного шлака

2

3

21 Щебень шлакопемзовый и аглопоритовый

2

3

22 Щебень и песок из вспученного перлита

5

10

23 Вермикулит вспученный

1

3

24 Песок для строительных работ

1

2

25 Цементно-шлаковый раствор

2

4

26 Цементно-перлитовый раствор

7

12

27 Гипсоперлитовый раствор

10

15

28 Поризованный гипсоперлитовый раствор

6

10

29 Туфобетон

7

10

30 Пемзобетон

4

6

31 Бетон на вулканическом шлаке

7

10

32 Керамзитобетон на керамзитовом песке и керамзитопенобетон

5

10

33 Керамзитобетон на кварцевом песке с поризацией

4

8

34 Керамзитобетон на перлитовом песке

9

13

35 Шунгизитобетон

4

7

36 Перлитобетон

10

15

37 Шлакопемзобетон (термозитобетон)

5

8

38 Шлакопемзопено- и шлакопемзогазобетон

8

11

39 Бетон на доменных гранулированных шлаках

5

8

40 Аглопоритобетон и бетон на топливных (котельных) шлаках

5

8

41 Бетон на зольном гравии

5

8

42 Вермикулитобетон

8

13

43 Полистиролбетон

4

8

44 Газо- и пенобетон, газо- и пеносиликат

8

12

45 Газо- и пенозолобетон

15

22

46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе

1

2

47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе

1,5

3

48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе

2

4

49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе

2

4

50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе

2

4

51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе

1,5

3

52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе

1

2

53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе

2

4

54 Древесина

15

20

55 Фанера клееная

10

13

56 Картон облицовочный

5

10

57 Картон строительный многослойный

6

12

58 Железобетон

2

3

59 Бетон на гравии или щебне из природного камня

2

3

60 Раствор цементно-песчаный

2

4

61 Раствор сложный (песок, известь, цемент)

2

4

62 Раствор известково-песчаный

2

4

63 Гранит, гнейс и базальт

64 Мрамор

65 Известняк

2

3

66 Туф

3

5

67 Листы асбестоцементные плоские

2

3

Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально

Причем похоже что дальше экономия будет приобретать все большую важность

Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов

Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования

Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой

Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Расчет толщины стен

Стены должны быть теплыми! Что такое теплые? Это по теплопроводности опережающие СНиП! Для начала нужно разобраться какими они должны быть в соответствии со СНиПом. Это не так сложно, как кажется на первый взгляд.

Первым делом возникает вопрос: «а сколько дней в году длиться отопительный сезон?», может нам вообще ничего отапливать не надо и живем мы в Индии. Однако суровые реальности подсказывают, что из 365 дней 202 температура воздуха ≤ 8 °C. Но это в моей Липецкой области, а в вашей наверняка другие цифры. Какие? На этот вопрос вам ответит СНиП 23-01-99. В нем ищем таблицу №1 в ней ищем 11 столбик и свой населенный пункт. Цифра на пересечении и есть количество дней где температура ниже 8 градусов.

Зачем все это было нужно? Для того чтобы открыть СНиП 23-02-2003, найти в нем формулу, и определить градусо-сутки отопительного периода. Величина показывает температурную разницу наружного и внутреннего воздуха, то есть «на сколько нагревать». Умноженную на количество этих суток, то есть «сколько суток нагревать»

Ну узнали. Толк-то от этого какой? А такой! На Данном этапе мы получаем какую-то цифру, в моем случае получилась 5050. По этой цифре, того же самого СНиПа в таблице 4 ищем чему равно нормируемое значение сопротивление теплопередаче стен (3-й столбик). Получается что-то между 2,8-3,5 путем интерполяции находим точное значение (если надо и интересно) или берем максимальное. У меня получилось 3,2°С/Вт.

Теперь, чтобы посчитать толщину стены, нам необходимо воспользоваться формулой R = s / λ (м2•°С/Вт). Где R — сопротивление теплопередаче, s — толщина стены (м), а λ — теплопроводность. Теперь представим, что мы решили построить свою стену из газосиликатных блоков, полностью. В моем случае это блоки Липецкого силикатного завода. Нужно узнать коэффициент теплопроводности. Для этого идем на сайт производителя вашего материала, находим свой материал и смотрим описания характеристик. В моем случае это блоки из ячеистого бетона и коэффициент теплопроводности равен 0,10-0,14. Возьмем 0,14 (влажность и все такое). По вышеуказанной формуле нам нужно найти S. S = R * λ, то есть S = 3,2 * 0,14 = 0,45 м.

Хорошая получилась стена. И дорогая. Наверное есть способ сэкономить. Что если мы возьмем блок толщиной 20 см и сделаем из него стену. Получим сопротивление теплопередачи у такой стены равное 1,43 (м2•°С/Вт), а в нашем регионе 3,2 (м2•°С/Вт). Маловато будет! А что если мы сделаем многослойную стену и снаружи стены используем пенопласт, а лучше минеральную вату, потому как они с примерно одинаковыми коэффициентами теплопроводности, но минвата экологически чище и не горит к томуже. Да и мышки ее как-то не жалуют. Нам осталось добрать теплопередачи. 3,2 — 1,43 = 1,77 (м2•°С/Вт). Теперь тут опять все просто. Так как стена у меня трехслойная и снаружи еще обложена кирпичом, то нужно подобрать утеплитель который лучше всего подходит для этого дела. Я выбрал ROCKWOOL КАВИТИ БАТТС максимально обозначенная теплопроводность у него λ = 0,041 Вт/(м·К) по ней и посчитал, S = 1.77 * 0.041 = 0.072. У меня получилась стена из газосиликатного блока 20 см и 7 см каменной ваты. Согласитесь лучше чем 45 см газосиликата? А может плюнуть на все и сделать каркасник с утеплителем? Можно))) в Канаде и многих европейских странах все так и делают. Но мы то русские! Поэтому обложим все это хозяйство облицовочным кирпичом, и будет у нас красиво и практично! Почему мы в расчет не принимали облицовочный кирпич? Просто он не несет никаких энергосберегающих функций. Более того в нем необходимо сделать вентиляционные зазоры. Но это уже другая история.

В конечном итоге, решив, что требования СНиПов постоянно повышаются, я сделал утеплитель толщиной 10 см. Тем более, что стоило это не на много дороже.

Что такое теплопроводность и какой она бывает

Любому твердому телу для охлаждения или разогрева требуется определенное время, при этом речь идет не о поверхности тела, а обо всем его объеме. Таким образом теплопроводностью называют способность тела пропускать тепловую энергию сквозь объем, тогда как количественно ее выражают коэффициентом.

Наиболее высокими коэффициентами теплопроводности обладают металлические материалы, тогда как теплоизоляторы, например, пенопласт или кирпич тепло проводят в сотни раз хуже.

По коэффициенту теплопроводности определяют способность материала удерживать тепловую энергию. В случае с минеральной ватой и другими аналогичными ей утеплителями речь идет количестве тепла, которое уходит через метр квадратный площади при толщине 1 м за 1 ч и разности температур в 1 градус Цельсия.

Для устройства надежного слоя теплоизоляции выбирают утеплители в том числе и на основе минеральной ваты с наименьшими коэффициентами теплопроводности. Обычно это изоляторы с ячеистой пористой поверхностью, способные гарантировать оптимальный объем тепла.

Считается, что чем более жестким является материал для теплоизоляции, тем меньше у него теплопроводность.

У плит минеральной ваты коэффициенты теплопроводности колеблются между 0,032 и 0,039 Вт/(м°C). Если сравнить с минватой для теплоизоляции часто используемый пенопласт, то станет ясно, что уровень теплопроводности у этих материалов практически одинаковый, несмотря на то, что в отношении качественных характеристик последний заметно уступает утеплителям на основе минеральной ваты.

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

От чего зависит теплопроводность?

Значения данной величины могут зависеть от нескольких факторов. Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.

  • Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
  • На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
  • Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
  • Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

ПоказательБетоны, растворно-бетонные смеси
ЖелезобетонЦементно-песчаный растворСложный раствор (цементно-известково-песчаный)Известково-песчаный раствор
плотность, кг/куб.м2500180017001600
коэффициент теплопроводности, Вт/(м•°С)2,040,930,870,81
толщина стен, м6,532,982,782,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

ПоказательКонструкционно-теплоизоляционные м-лы
ПемзобетонКерамзитобетонПолистиролбетонПено- и газобетон (пено- и газосиликат)Кирпич глиняныйСиликатный кирпич
плотность, кг/куб.м80080060040018001800
коэффициент теплопроводности, Вт/(м•°С)0,680,3260,20,110,810,87
толщина стен, м2,1761,040,640,352,592,78

Таблица 3.2

ПоказательКонструкционно-теплоизоляционные м-лы
Кирпич шлаковыйСиликатный кирпич 11-типустотныйКирпич силикатный 14-типустотныйСосна (поперечное расположение волокон)Сосна (продольное расположение волокон)Фанера клеёная
плотность, кг/куб.м150015001400500500600
коэффициент теплопроводности, Вт/(м•°С)0,70,810,760,180,350,18
толщина стен, м2,242,592,430,581,120,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

ПоказательТеплоизоляционные м-лы
ППТПТ полистиролбетонныеМаты минераловатныеПлиты теплоизоляционные (ПТ) из минеральной ватыДВП (ДСП)ПакляЛисты гипсовые (сухая штукатурка)
плотность, кг/куб.м3530010001902001501050
коэффициент теплопро- водности, Вт/(м•°С)0,390,10,290,0450,070,1921,088
толщина стен, м0,120,320,9280,140,2240,2241,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Как правильно выбрать утеплитель?

При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием

Основные требования, предъявляемые к теплоизоляционным материалам:

Теплопроводность.

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и  подходят для утепления вертикальных конструкций внутри помещений.

А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.

В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

При выборе утеплителя нужно изучить характеристики каждого варианта

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий