Виды и различия солнечных коллекторов
На сегодняшний день распространение среди промышленно изготавливаемых солнечных коллекторов получили два вида систем:
- плоские солнечные панели;
- вакуумные (вакуумированные) трубчатые коллекторы.
Плоская солнечная панель
Является распространенным типом солнечного коллектора, используемого в современных системах гелиоэнергетики. Широкое распространение данный тип получил вследствие относительной дешевизны и простоты, как устройства, так и эксплуатации. Недостатком плоских солнечных коллекторов является значительное (до двух раз) понижение КПД в условиях отрицательных температур наружного воздуха.
Конструкция плоского солнечного коллектора.
Конструктивно представляет собой панель с площадью поглощающей поверхности 2-2,5 м2, выполненную из алюминиевых или стальных сплавов. Лицевая часть выполнена в виде листа специального гелиостекла, что обеспечивает максимальное поглощение энергии солнечного света и минимальные потери энергии с отраженными и рассеянными лучами. Непосредственно под гелиостеклом расположен поглотитель, выполняемый в виде плоской трубки из медных или алюминиевых сплавов, имеющих высокий коэффициент теплопередачи.
Трубка, как правило, имеет радиальное оребрение, что значительно повышает коэффициент теплопередачи поглотителя. На поглотитель наносится покрытие с высоким коэффициентом поглощения в спектрах теплового излучения, что повышает общий КПД коллектора. Под поглотителем располагается слой тепловой изоляции, уменьшающий тепловые потери системы в окружающую среду. Необходимая тепловая мощность солнечного коллектора достигается включением нескольких панелей в единую солнечную батарею или коллектор.
Вакуумный (вакууммированный) трубчатый коллектор
Дорогостоящий вид солнечного коллектора вследствие сложного изготовления и ряда преимуществ перед плоскими солнечными панелями. Конструктивно представляет собой ряд парных стеклянных труб, спаянных между собой, из пространства между которыми откачан воздух. Вакуум в пространстве между трубками является прекрасным тепловым изолятором и предотвращает тепловые потери в окружающую среду от теплоносителя. В меньшую трубу вводится медная, алюминиевая или стеклянная трубка поглотителя. Трубы верхней частью вводятся в распределитель, в котором циркулирует теплоноситель. Вакуумные (вакуумированные) трубчатые коллекторы по типу распределителя подразделяются на два типа: с плоской тепловой трубой и прямоточные.
Коллекторы с плоской трубой
Вакуумный трубчатый солнечный коллектор с плоской тепловой трубой – конструкция.
Представляют собой рекуперативный теплообменник, расположенный в распределителе. В этом случае теплопередача от нагретого теплоносителя вакуумной трубы к теплоносителю циркуляционного контура теплоснабжения здания происходит через стенку и теплоносители этих контуров не смешиваются. Преимущества перед прямоточными коллекторами состоят в сохранении высоких показателей работы при температуре окружающей среды до -45оС, возможности замены отдельной вакуумной трубки, вышедшей из строя, без разбора коллектора и прекращения его работы, а также в возможности регулирования угла установки каждой вакуумной трубки в пределах одного коллектора.
Прямоточные коллекторы
Прямоточный вакуумный трубчатый солнечный коллектор – конструкция.
Объединяют циркуляционный и обогревающийся контур. В распределителе проходят подающий и циркуляционный трубопроводы, к которым непосредственно присоединяются вакуумные трубки. Теплоноситель подается в распределитель по подающему трубопроводу, из которого попадает в вакуумную трубку, где проходит обогрев. Нагретый теплоноситель возвращается в обратный трубопровод и уходит непосредственно на нужды теплоснабжения. Преимущества прямоточных коллекторов перед вакуумными состоят в отсутствии промежуточной стенки между теплоносителями, что снижает тепловые потери и в возможности устанавливать коллектор на любых поверхностях под любыми углами, поскольку циркуляция теплоносителя в пределах всего коллектора будет осуществляться насосом.
Преимущества и недостатки солнечных коллекторов
Основные преимущества солнечных водонагревателей:
- использование неиссякаемого и абсолютно бесплатного источника энергии;
- уменьшается расход традиционных источников энергии — газа, нефти, угля;
- возможность работы круглый год;
- можно легко уменьшать или наращивать тепло, убирая/дополняя количество секций;
- изменение цен на энергоносители не оказывают влияние на функционирование гелиоустановок;
- надежная работа, удобная эксплуатация на протяжении длительного времени.
Главные недостатки:
- стоимость собственно солнечного коллектора и его установки вместе с обвязкой со всеми дополняющими элементами обойдется в немаленькую сумму — это достаточно дорогое удовольствие:
- обеспечить эффективную автономную работу солнечного коллектора удается далеко не всегда из-за непостоянного присутствия солнца на небосклоне, поэтому применение одного лишь коллектора без дополнительных источников энергии, не обеспечивает потребностей человека в тепловой энергии.
6 Самостоятельное изготовление
Так как солнечный коллектор стоит немало, многие люди принимают решение изготовить его своими руками. Это вполне реально, но требует точного следования всем правилам. Наиболее прост в изготовлении прибор, работающий на воде.
Сначала нужно изготовить корпус устройства. Можно использовать один из материалов, который есть в наличии: дерево, чёрный или цветной металл. Деревянный каркас — самый бюджетный вариант. Размеры стоит подбирать исходя из запланированного места установки и назначения прибора.
Затем внутрь корпуса кладут утеплитель, а сверху него — медную трубку в форме змеевика. Для увеличения КПД под трубку можно положить слой фольги. Она повысит температуру внутри корпуса, а также понизит теплопотери в нижнюю сторону коллектора.
Использование солнечных коллекторов может стать одним из лучших решений в выборе системы отопления для частного дома. Потратиться нужно лишь на планирование и на установку самого устройства, а дальше уже природа предоставит энергию для отопления. Это позволит существенно снизить общие затраты на обслуживание здания, к тому же будет эффективно в любое время года.
Особенности и устройство
Солнечный коллектор – это современная конструкция, которая способна накапливать солнечную энергию и превращать ее в источник тепла. Устройство изготавливают из металлических пластин, покрашенных в черный цвет и заключенных в корпус из стекла. Такое оборудование можно устанавливать для отопления дома, а также для обеспечения систем горячей водой.
Благодаря установке коллектора можно экономить от 30 до 60% энергоносителей, а это означает, что расходы на электричество и газ значительно снижаются и эксплуатация дома удешевляется. Подключенное в систему теплоснабжения устройство играет роль теплового носителя, который круглосуточно поддерживает температуру согласно санитарным и технологическим нормам.
Конструкция солнечного коллектора представлена в виде системы трубок, последовательно соединенных между собой и имеющих входную и выходную магистраль. По трубкам может проходить как воздушный поток, так и техническая вода. Во время циркуляции вещества наблюдается его переход из одного агрегатного состояния в другое, в результате чего происходит выделение тепла. То есть, принцип действия батареи заключается в накоплении энергии фотоэлементами, ее концентрации и передачи.
Помимо трубок, конструкция также имеет специальный бак, где хранится вода в нагретом состоянии. Чтобы жидкость не охлаждалась, бак дополнительно обшивают качественной теплоизоляцией. Кроме это, в емкость монтируют и дублирующий электронагреватель, который автоматически включается в зимний период или при пасмурной погоде. Корпус коллектора, как правило, изготавливают из стекла, так как использование полимерных материалов не рекомендуется. Они обладают высоким показателем теплового расширения, неустойчивы к лучам ультрафиолета, что может привести к разгерметизации корпуса.
В качестве теплоносителя обычно выбирают воду, но если планируется круглогодичная эксплуатация системы, то нужно до наступления холодов техническую жидкость заменять антифризом. Часто теплоносителем в коллекторах выступает и воздух, каналы для его перемещения делают из профлистов.
К главным преимуществам солнечных агрегатов можно отнести:
- возможность бесперебойного обогрева зданий круглый год;
- долгий срок эксплуатации, достигающий 30 лет;
- экономия энергоресурсов;
- возможность одновременного обогрева помещений, теплиц, пристроек и бассейнов;
- отсутствие отходов;
- быстрый монтаж;
- оптимизация под индивидуальные проекты.
Что же касается недостатков, то их немного:
- высокая стоимость установки;
- низкая эффективность работы устройства, обусловленная климатическими условиями и особенностями ландшафта;
- принудительная циркуляция воды.
Подключение коллекторов
Когда установка коллекторов завершена, их необходимо соединить между собой и подключить к водопроводной сети. Соединение друг с другом выполняется при помощи специальных трубок с резьбовыми штуцерами.
Схема подключения может быть параллельной или последовательной, на итоговую производительность это не повлияет. Метод компоновки обуславливается количеством коллекторов, площадью крыши и необходимостью их размещения таким образом, чтобы не было затенений. Но есть и свои тонкости.
При параллельном монтаже надо обращать внимание на гидравлическое сопротивление. Оно должно быть одинаковым для всех веток коллекторов (чтобы избежать потери напора)
На снижение напора также влияет использование труб разного сечения (изменение внутреннего пропускного диаметра), длина и конфигурация водоподающей трассы. При последовательном соединении можно соединять вместе не более 4-6 коллекторов (в зависимости от моделей и их характеристик).
Достоинства и недостатки солнечных коллекторов для нагрева воды
В летний период солнечные коллекторы способны полностью обеспечить дом горячей водой. В межсезонье такая альтернативная системы отопления способна уменьшить нагрузку на газовый котел, что позволит снизить потребление газа, сократив при этом финансовые затраты.
Коллектор выступает в качестве дополнительного источника бесплатного тепла, благодаря чему можно снизить зависимость от газа. В летний период для получения горячей воды не понадобятся финансовые затраты.
Обеспечить дом горячей водой в летний период можно с помощью солнечных коллекторов
На монтаж солнечного коллектора не требуется получения разрешения. При выборе оборудования следует подробно изучить всю имеющуюся информацию и проконсультироваться со знающим продавцом. Установку системы необходимо доверить специалисту или выполнить самостоятельно при наличии определенных навыков и умений в области сантехники. Период эксплуатации системы в среднем составляет около 15 лет. В течение этого времени можно использовать бесплатное солнечное тепло для собственных нужд.
К недостаткам такой системы относятся большие финансовые затраты, которые необходимо будет понести при покупке солнечных коллекторов. Средняя стоимость одного элемента составляет 500-1000 $. Система, состоящая из двух коллекторов и собранная под ключ, обойдется в пределах 2300-3000 $.
Интенсивность солнечной энергии отличается в разный период года, поэтому солнечные коллекторы не могут использоваться как единственный источник тепла. Для работы системы понадобится накопительная емкость, покупка которой повлечет увеличение затрат на обустройство системы нагрева воды от солнца.
Эффективность солнечных коллекторов для нагрева воды
Эффективность коллектора зависит от региона. Чем южнее регион, тем активнее солнце и выше эффективность работы коллектора.
На территории Украины солнечные коллектора имеют большой потенциал использования. В среднем на 1м2 земли за год падает от 1000 до 1350кВт-ч солнечной энергии. Это эквивалентно 120-140м3 газа.
Произведем простой расчет. Возьмем обычный коллектор, рабочая площадь которого – 2,3м2. За год его выработка тепловой энергии в газовом эквиваленте составит 276-322м3. При тарифе на газ 1,8грн/м3 получаем: за год один коллектор экономит 496-579грн.
Не очень много, учитывая начальную стоимость коллектора. При таких цифрах его окупаемость будет очень большой. Конечно цифры очень усредненные и для каждого региона нужно делать свой расчет.
Необходимые инструменты и материалы для монтажа солнечного коллектора
Установка солнечных коллекторов осуществляется под открытым небом. Следовательно, сама конструкция, трубопроводная система и все вспомогательные крепления со временем подвергаются разрушающему воздействию окружающей среды. На них могут появиться коррозии и деформации. Поэтому для установки используют только нержавеющие материалы.
Для монтажа солнечного коллектора используют следующие вспомогательные инструменты:
- кран или подъемник;
- строительные леса;
- кровельная лестница;
- страховочное оборудование – жилет, трос и т. д.;
- строительный уровень;
- вакуумный захват;
- изоляционный материал для труб.
От качества установки зависит надежность, эффективность и долговечность оборудования.
Солнечный коллектор — водяной или воздушный
Каждый из нагревателей эффективен, отличается только основное предназначение и принцип работы:
- Водяной коллектор — применяется для обеспечения потребностей в ГВС и низкотемпературных систем теплых полов. Эффективность работы в зимний период существенно снижается. Вакуумные и панельные коллекторы косвенного нагрева, подсоединенные к буферной емкости, продолжают аккумулировать тепло в течение всего года. Главный недостаток, высокая стоимость гелиоколлектора, монтажа и обвязки.
Воздушный вентиляционный коллектор — отличается простой конструкцией и устройством, которое при желании можно изготовить самостоятельно. Основное предназначение: обогрев помещений. Конечно, существуют схемы, позволяющие использовать полученное тепло для ГВС, но при этом эффективность воздушных коллекторов падает практически вдвое. Преимущества: низкая стоимость комплекта и установки.
Солнечные воздушные системы отопления работают только днем. Нагрев воздуха начинается даже в пасмурную погоду, при сильной облачности и во время дождя. Работа воздухонагревателей зимой не прекращается.
Как работает солнечный коллектор?
Принцип действия коллектора основан на поглощении (абсорбции) тепловой энергии солнца специальным приемным устройством и передачей его с минимальными потерями теплоносителю. В качестве приемника используются медные или стеклянные трубки, окрашенные в черный цвет.
Ведь известно, что лучше всего абсорбируют тепло предметы, имеющие темную или черную окраску. Теплоносителем чаще всего выступает вода, иногда – воздух. По конструкции солнечные коллекторы для отопления дома и горячего водоснабжения бывают таких видов:
- воздушные;
- водяные плоские;
- водяные вакуумные.
Среди прочих воздушный солнечный коллектор отличается простотой конструкции и, соответственно, самой низкой ценой. Он представляет собой панель – приемник солнечной радиации из металла, заключенный в герметичный корпус. Стальной лист для лучшей теплоотдачи снабжен с задней стороны ребрами и уложен на дно с тепловой изоляцией. Спереди установлено прозрачное стекло, а по бокам корпуса имеются проемы с фланцами для подключения воздуховодов или других панелей, как показано на схеме:
Надо сказать, что установка солнечных коллекторов с нагревом воздуха имеет свои особенности. Из-за их невысокой эффективности для обогрева помещений нужно применять несколько подобных панелей, объединенных в батарею. Кроме того, обязательно понадобится вентилятор, поскольку нагретый воздух из коллекторов, находящихся на кровле, самостоятельно вниз не пойдет. Принципиальная схема воздушной системы показана ниже на рисунке:
Устройство и принцип работы воздушного солнечного коллектора
Солнечный воздушный коллектор состоит из нескольких основных частей:
Схема работы воздушного солнечного коллектора
- Вся конструкция коллектора помещена в прочный и герметичный корпус, который обязательно снабжен тепловым изолятором. Тепло, попавшее внутрь коллектора не должно «утекать» наружу.
- Главная деталь любого коллектора – это солнцеприемная панель, которую еще называют поглотителем или абсорбером. Задача этой панели принять солнечную энергию, а затем передать ее воздуху, поэтому она должна быть изготовлена из материала с наибольшей теплопроводностью. Такими свойствами из доступных в быту являются медь и алюминий, реже сталь. Для лучшей теплоотдачи нижнюю часть абсорбера делают как можно большей площади, поэтому могут применяться ребра, волнистая поверхность, перфорация и другие способы. Для лучшего поглощения солнечной энергии приемная часть абсорбера окрашивается в темный матовый цвет.
- Верхняя часть коллектора герметично закрывается прозрачной изоляцией в качестве которой может применяться закаленное стекло или оргстекло, или поликарбонатное стекло.
Солнечный коллектор ориентируют на юг и придают поверхности такой наклон, чтобы максимальное количество солнечной энергии попадало на поверхность. Как говорят специалисты – для максимальной инсоляции. Холодный наружный воздух естественно или принудительно попадает в приемную часть, проходит через ребра абсорбера и выходит с другой части, снабженную фланцем для стыковки с воздуховодом, ведущим внутрь отапливаемого помещения. Стоит отметить, что вариантов конструкций солнечных коллекторов существует масса и вышеописанная показана только для примера.
Воздушное отопление при помощи солнечных коллекторов не может в нашей климатической зоне полностью заменить основное отопление, но оно будет очень хорошим подспорьем даже в морозные зимние солнечные дни.
Выгодно ли это
Определить, выгодно ли использовать солнечные коллекторы, каждый определяет для себя индивидуально, в зависимости от региона проживания, потребности в тепловой энергии и в зависимости от финансовых возможностей.
Регион проживания – это важный критерий, при определении эффективности использования устройств, служащих для преобразования энергии солнца в другие виды энергии. Солнечная активность (продолжительность солнечного сияния), в разных регионах нашей страны разная, что видно на приведенной ниже схеме.
Из данной схемы видно, что наиболее благоприятные регионы, для использования солнечной энергии, с продолжительностью солнечной активности более 2000,0 часов в год, расположены в южных районах страны. В этих районах также не бывает холодных и продолжительных зим, что определяет возможность успешного использования солнечных коллекторов в системах отопления и горячего водоснабжения, именно в этих областях России.
При необходимости создать абсолютно автономную систему, от внешних, традиционных поставщиков тепловой энергии, следует помнить, что, установив только коллектор, создать подобную систему не получится, т. к. для создания циркуляции теплоносителя, работы системы автоматики, необходима электрическая энергия. Поэтому, для полной автономии, необходимо проработать вопрос по независимому электроснабжению подключаемого объекта. Следовательно, для того, чтобы сделать абсолютно независимую систему, потребуются дополнительные финансовые затраты, что увеличит срок окупаемости оборудования.
Расчет
Солнечная энергия является идеальным источником для отопления зданий. Чтобы ее максимально преобразить в тепло, необходимо точно рассчитать затраты ресурсов и мощность установок, учитывая тип агрегата и его месторасположение. В первую очередь нужно знать какое количество энергии попадает на поверхность панели. Как известно, на 1 м2 поверхности попадает около 1367 Вт солнечной энергии, но проходя сквозь слои атмосферы, мощность теряется до 500 Вт. В связи с этим для средних расчетов берется условное значение 800 Вт.
Солнечный коллектор является рабочей станцией, основание которой защищено антибликовым покрытием и стеклом. Благодаря тому, что основание покрыто черной краской, наблюдается 100% поглощение энергии. Так как в состав батарей входит теплоизоляция, то можно определить коэффициент потери тепла. Для каждого материала он разный, но изоляцию коллекторов часто выполняют на основе минваты, поэтому для простых расчетов берется показатель 0,045. Предполагая то, что температурная разница между внешним и внутренним слоем теплоизоляции не превышает 50 С, потери энергии составят: 0,045: 0,1 × 50 = 22,5 Вт.
Аналогичны будут потери и для труб, поэтому суммарный показатель получится 45 Вт. Поэтому чтобы нагреть 1 л воды на 1 С, потребуется мощность энергии в 1,16 Вт. Определив эти величины, можно легко узнать объем жидкости, который можно нагреть батареей с рабочей площадью 1 м2 за один час: 800: 1,16 = 689,65. Чтобы улучшить теплопередачу, агрегаты лучше всего размещать с ориентацией на юг.
Важным расчетом считается, и рабочая площадь батареи. Для этого количество нужной энергии нужно разделить на 800 Вт и получится искомое значение
Но стоит обратить внимание, что данный показатель соответствует площади агрегата, рассчитанного на обслуживание одного человека. Поэтому если в доме проживает семья, состоящая из двух, трех и более человек, то значение следует увеличить
Экологичность
Положительные аспекты
Из всех доступных возобновляемых источников энергии именно солнечная энергия и солнечные батареи наносят минимальный ущерб окружающей среде. Электричество, произведенное при помощи солнечных батарей, не оказывает вредного воздействия на воздушные массы. И никак не загрязняет ни поверхностные, ни подземные воды, не истощает природные ресурсы и не несет опасности, как для животного мира, так и здоровья человека.
Единственный реально опасный эффект данного типа энергии связан с получением некоторого количества токсических веществ и химикатов, например, кадмия и мышьяка, которые используются при производстве солнечных батарей. Но, по большому счету, и эти негативные эффекты минимальны по своему объёму, если есть продуманная политика в плане их повторного использования и надлежащей утилизации.
Если смотреть широким полем зрения на проблему, то риски для окружающей среды от солнечных батарей минимальны. Приблизительные выбросы в атмосферу в ходе производства составляют 0,02 грамма теллуридла кадмия на ГИГАВАТТ\час электрической энергии, произведенной за весь срок службы солнечного модуля, и это очень низкий показатель.
Широкомасштабное использование солнечных батарей не несет никакого риска для здоровья человека и живых существ. А повторная переработка модулей, что уже отслужили свой срок службы, почти полностью нивелирует озабоченность «зеленых» по поводу вредности этого вида производства электрической энергии.
Во время своей работы солнечные модули не производят загрязнения Природы, и более того, постепенно замещая традиционные виды топлива (газ, нефть, уголь) они приносят существенные выгоды окружающей среде.
Теллурид кадмия в солнечных батареях на самом деле на поверку оказывается значительно более дружественен Природе, чем все остальные ныне используемые виды кадмийных батарей, включая знаменитые никель-кадмиевые.
Отрицательное влияние
Само производство солнечных батарей включает в себя использование некоторых токсичных газов, взрывоопасных летучих веществ, коррозийных жидкостей и подозрительных канцерогенных – вызывающих рак – реагентов.
Магнитуда возможных негативных эффектов на здоровье человека и Природу в случае производства солнечных батарей варьируется в зависимости от используемых токсических материалов, их насыщенности, интенсивности использования, а также продолжительности их воздействия на человека в условиях производства.
Утилизация значительных объемов отслуживших свое солнечных модулей на конкретной территории приводит к увеличению риска для здоровья людей в данной местности. А также это пагубно для местной флоры и фауны.
Утечка химических реагентов из утилизируемых модулей дает вероятность заражению местной почвы и поверхностных вод.
Скопление солнечных батарей на примере местечка Барстоу, Калифорния, под кодовым обозначением «Солнечная №2», занимает 52,6 гектаров (почти 130 акров) земель и производит около 10 мегаватт электричества на максимальном выходе при пиковых значениях. Производительность достигает лишь 16%.
Для таких вот установок типа «Солнечная -2», чтобы произвести такое же количество энергии, как и типичной 1000 мегаватт электростанции на обычном топливе, за год потребуется покрыть солнечными модулями 33 000 (!) гектаров земли. Или иными словами, 127 квадратных миль площади! А это уже серьезный урон окружающей среде.
Плоские приборы
Их конструктивное решение более простое, чем у вакуумных устройств, и одновременно они менее эффективны. Вода нагревается, когда циркулирует через трубки, прикрепленные к теплопроводной подложке, представляющей собой медный или алюминиевый лист – абсорбер.
Снизу подложку теплоизолируют, а сверху ее защищает прозрачный материал, пропускающий радиацию – поликарбонат или закаленное стекло с незначительным добавлением металла.
Наибольшей эффективностью отличается плоское устройство с медными трубками, которые припаяны к формованной подложке из меди. Коллектор, оборудованный трубками, изготовленными из шитого полиэтилена, поглощает меньше тепла, поскольку они имеют более низкую теплопроводность.
Плоские устройства обладают следующими характеристиками:
- Их рабочая среда нагревается максимум до 200 – 210 градусов.
- Поглощение солнечной энергии составляет до 70%.
- Минимальное снижение эффективности отопления зимой у солнечного коллектора в снежную погоду. Прозрачный лист, служащий защитой для подложки с трубками, в процессе функционирования нагревается, в результате чего снежный покров быстро тает.
- Имеют место теплопотери. Они возникают в результате контакта воздуха, нагретого в устройстве, с защитным стеклом, но они не превышают 30%. По мере снижения температуры на улице у прибора начинается увеличение потери тепла. Он прекращает функционировать при -20 °С и ниже.
- Высокая парусность. Это свойство может стать препятствием для монтажа плоского коллектора в регионах, где зимой дуют сильные ветра.
- Их устанавливают под углом к горизонту так, чтобы расположение обеспечивало им максимальную освещенность на протяжении светового дня.
Период окупаемости гелиосистемы
Понять, как быстро окупаются дорогостоящие солнечные коллекторы, поможет несложный расчет. Например, это будет плоское устройство площадью 2 «квадрата» суточной производительностью 6,4 кВт·ч тепла.
Когда главным источником тепловой энергии является электрокотел, то выработанный им киловатт-час обойдется в 5 рублей (согласно ценам 2017 года), а это означает, что ежесуточно экономия на электропитании при эксплуатации плоского устройства составит 6,4х5=32 рубля, а срок окупаемости при цене устройства 20 тысяч – 625 дней (20000:32=625).
Когда основной источник тепла – газовый агрегат, киловатт-час энергии будет стоить 0,7 рубля, а суточная экономия – 6,4х0,7 = 4,48 рубля. Период окупаемости увеличится до 4464 дней или 12 лет. Если учесть, что средний срок эксплуатации коллектора составляет не больше 15 лет, то можно сделать вывод, что в данном случае гелиосистема не окупится никогда.
Коллектор Станилова
Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.
Конструкция коллектора
Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.
На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.
Материалы и детали для изготовления
Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:
- стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
- рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
- доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
- прокатный уголок;
- соединительная муфта;
- трубы для сборки радиатора;
- хомуты для крепления радиатора;
- лист оцинкованного железа;
- приёмная и выпускная труба радиатора;
- бак объемом 200−300 литров;
- аквакамера;
- теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).
Этапы работ
Этапы изготовления коллектора Станилова своими руками:
- Из досок сколачивается контейнер, дно которого укрепляется брусьями.
- На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
- После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
- Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
- Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
- Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
- Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
- После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
- Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.
Подведем итоги
В условиях тотального подорожания коммунальных услуг можно использовать альтернативные способы обогрева помещений, подогрева воды для хозяйственных нужд. В других странах солнечные коллекторы применяются для отопления довольно давно.
Если вы не хотите платить большие деньги за промышленный водяной коллектор, его можно собрать самостоятельно, используя подручные материалы. Хотите, чтобы конструкция была более солидной и действительно могла удовлетворять потребности в горячей воде и отапливала ваш дом? Тогда придется посетить строительный магазин, подготовиться к сборке более основательно: приобрести вакуумные колбы, специальные трубки, листы стекла или поликарбоната, другие комплектующие.
Резка и зачистка медных труб для солнечного коллектора
Когда будете решать вопрос, какая система оптимальная, принимайте во внимание: солнечные коллекторы, как любое техническое решение, имеют плюсы и минусы, которые обязательно нужно учитывать
Плюсы и минусы гелиосистемы
Из положительных сторон выделяют:
- экологически чистый вид энергии, получаемый бесплатно;
- снижение расходов на оплату коммунальных услуг за централизованный подогрев воды до 40-50 %;
- небольшой срок окупаемости;
- возможность подогревать воду для хозяйственных нужд и отапливать небольшие помещения d зимний период;
- широкий выбор материалов, простота сборки конструкций.
К отрицательным моментам можно отнести:
- трудозатраты на создание светового коллектора;
- понижение коэффициента полезного действия в зимнее время, что делает практически невозможным использование таких систем в северных широтах;
- нужны профилактический уход и очистка;
- в холодное время необходимо использовать антифриз, что влечет дополнительные расходы.
Видео по теме: